Background Deficits in the cerebellar locomotor region (CLR) have been associated with loss of gait automaticity in individuals with freezing of gait in Parkinson's disease (freezers); however, exercise interventions that restore gait automaticity in freezers are lacking. We evaluated the effects of the adapted resistance training with instability ([ARTI] complex exercises) compared with traditional motor rehabilitation (without complex exercises) on gait automaticity and attentional set‐shifting. We also verified associations between gait automaticity change and CLR activation change previously published. Methods Freezers were randomized either to the experimental group (ARTI, n = 17) or to the active control group (traditional motor rehabilitation, n = 15). Both training groups performed exercises 3 times a week for 12 weeks. Gait automaticity (dual‐task and dual‐task cost [DTC] on gait speed and stride length), single‐task gait speed and stride length, attentional set‐shifting (time between Trail Making Test parts B and A), and CLR activation during a functional magnetic resonance imaging protocol of simulated step initiation task were evaluated before and after interventions. Results Both training groups improved gait parameters in single task (P < 0.05), but ARTI was more effective than traditional motor rehabilitation in improving DTC on gait speed, DTC on stride length, dual‐task stride length, and CLR activation (P < 0.05). Changes in CLR activation were associated with changes in DTC on stride length (r = 0.68, P = 0.002) following ARTI. Only ARTI improved attentional set‐shifting at posttraining (P < 0.05). Conclusions ARTI restores gait automaticity and improves attentional set‐shifting in freezers attributed to the usage of exercises with high motor complexity. © 2020 International Parkinson and Movement Disorder Society
BackgroundThe use of objective gait and balance metrics is rapidly expanding for evaluation of atypical parkinsonism, and these measures add to clinical observations. Evidence for rehabilitation interventions to improve objective measures of balance and gait in atypical parkinsonism is needed.AimOur aim is to review, with a narrative approach, current evidence on objective metrics for gait and balance and exercise interventions in progressive supranuclear palsy (PSP).MethodsLiterature searches were conducted in four computerized databases from the earliest record up to April 2023: PubMed, ISI’s Web of Knowledge, Cochrane’s Library, and Embase. Data were extracted for study type (cross-sectional, longitudinal, and rehabilitation interventions), study design (e.g., experimental design and case series), sample characteristics, and gait and balance measurements.ResultsEighteen gait and balance (16 cross-sectional and 4 longitudinal) and 14 rehabilitation intervention studies were included. Cross-sectional studies showed that people with PSP have impairments in gait initiation and steady-state gait using wearable sensors, and in static and dynamic balance assessed by posturography when compared to Parkinson’s disease (PD) and healthy controls. Two longitudinal studies observed that wearable sensors can serve as objective measures of PSP progression, using relevant variables of change in turn velocity, stride length variability, toe off angle, cadence, and cycle duration. Rehabilitation studies investigated the effect of different interventions (e.g., balance training, body-weight supported treadmill gait, sensorimotor training, and cerebellar transcranial magnetic stimulation) on gait, clinical balance, and static and dynamic balance assessed by posturography measurements. No rehabilitation study in PSP used wearable sensors to evaluate gait and balance impairments. Although clinical balance was assessed in 6 rehabilitation studies, 3 of these studies used a quasi-experimental design, 2 used a case series, only 1 study used an experimental design, and sample sizes were relatively small.ConclusionWearable sensors to quantify balance and gait impairments are emerging as a means of documenting progression of PSP. Robust evidence for improving balance and gait in PSP was not found for rehabilitation studies. Future powered, prospective and robust clinical trials are needed to investigate the effects of rehabilitation interventions on objective gait and balance outcomes in people with PSP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.