Explanations of machine learning (ML) predictions are of fundamental importance in different settings. Moreover, explanations should be succinct, to enable easy understanding by human decision makers. Decision trees represent an often used approach for developing explainable ML models, motivated by the natural mapping between decision tree paths and rules. Clearly, smaller trees translate directly to smaller rules, and so one challenge is to devise solutions for computing smallest size decision trees given training data. Although simple to formulate, the computation of smallest size decision trees turns out to be an extremely challenging computational problem, for which no practical solutions are known. This paper develops a SATbased model for computing smallest-size decision trees given training data. In sharp contrast with past work, the proposed SAT model is shown to scale for publicly available datasets of practical interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.