Cyanobacteria may possess two distinct nickel-iron (NiFe)-hydrogenases: an uptake enzyme found in N(2)-fixing strains, and a bidirectional one present in both non-N(2)-fixing and N(2)-fixing strains. The uptake hydrogenase (encoded by hupSL) catalyzes the consumption of the H(2) produced during N(2) fixation, while the bidirectional enzyme (hoxEFUYH) probably plays a role in fermentation and/or acts as an electron valve during photosynthesis. hupSL constitute a transcriptional unit, and are essentially transcribed under N(2)-fixing conditions. The bidirectional hydrogenase consists of a hydrogenase and a diaphorase part, and the corresponding five hox genes are not always clustered or cotranscribed. The biosynthesis/maturation of NiFe-hydrogenases is highly complex, requiring several core proteins. In cyanobacteria, the genes that are thought to affect hydrogenases pleiotropically (hyp), as well as the genes presumably encoding the hydrogenase-specific endopeptidases (hupW and hoxW) have been identified and characterized. Furthermore, NtcA and LexA have been implicated in the transcriptional regulation of the uptake and the bidirectional enzyme respectively. Recently, the phylogenetic origin of cyanobacterial and algal hydrogenases was analyzed, and it was proposed that the current distribution in cyanobacteria reflects a differential loss of genes according to their ecological needs or constraints. In addition, the possibilities and challenges of cyanobacterial-based H(2) production are addressed.
Cyanobacteria are a group of photosynthetic prokaryotes that have a diverse morphology, minimal nutritional requirements and metabolic plasticity that has made them attractive organisms to use in biotechnological applications. The use of these organisms as cell factories requires the knowledge of their physiology and metabolism at a systems level. For the quantification of gene transcripts real-time quantitative polymerase chain reaction (RT-qPCR) is the standard technique. However, to obtain reliable RT-qPCR results the use and validation of reference genes is mandatory. Towards this goal we have selected and analyzed twelve candidate reference genes from three morphologically distinct cyanobacteria grown under routinely used laboratory conditions. The six genes exhibiting less variation in each organism were evaluated in terms of their expression stability using geNorm, NormFinder and BestKeeper. In addition, the minimum number of reference genes required for normalization was determined. Based on the three algorithms, we provide a list of genes for cyanobacterial RT-qPCR data normalization. To our knowledge, this is the first work on the validation of reference genes for cyanobacteria constituting a valuable starting point for future works.
Here we report on the functional characterization of the hypothetical protein Slr1270, a TolC homologue in Synechocystis sp. PCC 6803. Analysis of a slr1270 insertion deletion mutant and respective wild-type revealed that the mutant presents increased susceptibility to antibiotics. In addition, a detailed study of the exoproteome showed that Slr1270 mediates protein secretion. Among the protein substrates dependent on Slr1270 function, we found the S-layer structural component. Electron microscopy studies of the slr1270 mutant showed that the S-layer is indeed absent. The requirement of functional Slr1270 for protein secretion and drug resistance mechanisms suggests that Slr1270 plays a role similar to that described for TolC in other bacteria. Additional phenotypic traits could also be observed, including slower growth rates at low temperature, impairment in biofilm formation and increased activity of enzymes detoxifying reactive oxygen species. Furthermore, an increased capacity of outer membrane vesicles (OMVs) formation and release was also found in the slr1270 mutant, a feature that has not yet been observed in bacteria lacking TolC. This work highlights the marked physiological fitness that the TolC-like Slr1270 bestows to the photosynthetic model Synechocystis sp. PCC 6803 and presents a valuable model for studying OMVs formation and release.
Inteins are protein segments capable of joining adjacent residues via a peptide bond. In this process known as protein splicing, the intein itself is not present in the final sequence, thus achieving scarless peptide ligation. Here, we assess the splicing activity of 34 inteins (both uncharacterized and known) using a rapid split fluorescent reporter characterization platform, and establish a library of 15 mutually orthogonal split inteins for in vivo applications, 10 of which can be simultaneously used in vitro. We show that orthogonal split inteins can be coupled to multiple split transcription factors to implement complex logic circuits in living organisms, and that they can also be used for the in vitro seamless assembly of large repetitive proteins with biotechnological relevance. Our work demonstrates the versatility and vast potential of an expanded library of orthogonal split inteins for their use in the fields of synthetic biology and protein engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.