Reversible nucleophilic addition to a phthalocyanine core was observed for the first time for the electron-deficient cationic phosphorus(V) complex [PcP(OMe) 2 ] + , whose reaction with KOH afforded a highly distorted nonaromatic adduct bearing an OH group at one of the α-pyrrolic carbon atoms. This adduct was characterized by single-crystal X-ray diffraction, ESI HRMS, and NMR, and UV−vis spectroscopy, together with quantum-chemical modeling. The acidic treatment of this adduct restored aromaticity and recovered the starting cationic complex. The reversible aromaticity breakage resulted in dramatic changes in the photophysical properties of the studied complex, which could pave the way to novel switchable Pc-based compounds and materials.
The ability of P(V) phthalocyanines (Pcs) for efficient singlet oxygen (SO) generation was demonstrated for the first time by the example of unsubstituted and α- and β-octabutoxy-substituted P(V)Pcs with hydroxy, methoxy and phenoxy ligands in the apical positions of the octahedral P centre. Variation of substituents in Pc ring and P(V) axial ligands allows careful tuning of photophysical and photochemical properties. Indeed, a combination of BuO groups in the β-positions of the Pc ring and PhO groups as axial ligands provides significant SO generation quantum yields up to 90%; meanwhile, the values of SO generation quantum yields for others investigated compounds vary from 27 to 55%. All the complexes, except α-substituted P(V)Pc, demonstrate fluorescence with moderate quantum yields (10–16%). The introduction of electron-donating butoxy groups, especially in the α-position, increases the photostability of P(V)Pcs. Moreover, it has been shown in the example of β-BuO-substituted P(V) that the photostability depends on the nature of axial ligands and increases in the next row: OPh < OMe < OH. The presence of oxy/hydroxy axial ligands on the P(V) atom makes it possible to switch the photochemical and photophysical properties of P(V)Pcs by changing the acidity of the media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.