Protein complexes are an intrinsic aspect of life in the membrane. Knowing which proteins are assembled in these complexes is therefore essential to understanding protein function(s). Unfortunately, recent high throughput protein interaction studies have failed to deliver any significant information on proteins embedded in the membrane, and many membrane protein complexes remain ill defined. In this study, we have optimized the blue native-PAGE technique for the study of membrane protein complexes in the inner and outer membranes of Escherichia coli. In combination with second dimension SDS-PAGE and mass spectrometry, we have been able to identify 43 distinct protein complexes. In addition to a number of well characterized complexes, we have identified known and orphan proteins in novel oligomeric states. For two orphan proteins, YhcB and YjdB, our findings enable a tentative functional assignment. We propose that YhcB is a hitherto unidentified additional subunit of the cytochrome bd oxidase and that YjdB, which co-localizes with the ZipA protein, is involved in cell division. Our reference two-dimensional blue native-SDS-polyacrylamide gels will facilitate future studies of the assembly and composition of E. coli membrane protein complexes during different growth conditions and in different mutant backgrounds.It has been suggested that nearly all biochemical processes are performed by protein complexes (1). This is particularly true in cellular membranes, where many well characterized proteins assemble into complexes that carry out important tasks in energy generation, protein trafficking, and small molecule transport. Many uncharacterized proteins ("orphans") are also predicted to be localized in cell membranes (2, 3), and it is probable that they also often assemble into complexes. Identifying the interacting partners of these proteins is critical to understanding their function.Unfortunately, our knowledge of protein complexes in cellular membranes is poor, because membrane proteins are incompatible with commonly used protein interaction assays. High throughput studies on model systems (4 -11) have therefore consistently disregarded membrane proteins (12). Although genetic tools specific for membrane protein interactions have been developed (13-15), they have not yet been pursued past proof of principle.A related and elusive aspect of membrane biology pertains to how proteins are assembled into complexes following their insertion into the membrane. Although some folding chaperones have been identified for model substrates, the ubiquity of their roles is not known, and little is known about the assembly process. Robust and effective experimental assays are required to tackle the question of membrane protein assembly.Blue native (BN) 3 -PAGE (16, 17) offers an attractive proteomic solution for the analysis of membrane protein complexes. It has been successfully applied to respiratory complexes in mitochondria and Paracoccus denitrificans (18 -24) and photosynthetic complexes of chloroplasts and Synechocystis ...
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.