Removal of short-run dynamics from a stationary time series to isolate the medium- to long-run component can be obtained by a bandpass filter. However, bandpass filters are infinite moving averages and can therefore deteriorate at the end of the sample. This is a well-known result in the literature isolating the business cycle in integrated series. We show that the same problem arises with our application to stationary time series. In this paper, we develop a method to obtain smoothing of a stationary time series by using only contemporaneous values of a large data set, so that no end-of-sample deterioration occurs. Our method is applied to the construction of New Eurocoin, an indicator of economic activity for the euro area, which is an estimate, in real time, of the medium- to long-run component of GDP growth. As our data set is monthly and most of the series are updated with a short delay, we are able to produce a monthly real-time indicator. As an estimate of the medium- to long-run GDP growth, Eurocoin performs better than the bandpass filter at the end of the sample in terms of both fitting and turning-point signaling. (c) 2010 The President and Fellows of Harvard College and the Massachusetts Institute of Technology.
Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Terms of use: Documents in Statement of purpose:The purpose of these working papers is to promote the circulation of research results (Research Series) and analytical studies (Documents Series) made within the National Bank of Belgium or presented by external economists in seminars, conferences and conventions organised by the Bank. The aim is therefore to provide a platform for discussion. The opinions expressed are strictly those of the authors and do not necessarily reflect the views of the National Bank of Belgium. The Working AbstractThis paper provides a summary of current knowledge on inflation persistence and price stickiness in the euro area, based on research findings that have been produced in the context of the Inflation Persistence Network. The main findings are: i) Under the current monetary policy regime, the estimated degree of inflation persistence in the euro area is moderate; ii) Retail prices in the euro area are more sticky than in the US; iii) There is significant sectoral heterogeneity in the degree of price stickiness; iv) Price decreases are not uncommon. The paper also investigates some of the policy implications of these findings. JEL-code :E31, E42, E52
This paper synthesises the implications of recent statistical evidence regarding inflation persistence in the euro area. For aggregate data, the degree of inflation persistence appears to be very high for sample periods spanning multiple decades but falls dramatically once we allow for time variation in the mean level of inflation; furthermore, the timing of these breaks in mean generally coincides with observed shifts in the monetary policy regime. Finally, sectoral inflation series exhibit much less persistence than aggregate inflation, mainly because of the influence of transitory sector-specific shocks. (JEL: E31, C22, C43)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.