Millisecond pulsars are neutron stars that attain their very fast rotation during a 10^8-10^9-yr-long phase of disk accretion of matter from a low-mass companion star. They can be detected as accretion-powered millisecond X-ray pulsars if towards the end of this phase their magnetic field is strong enough to channel the in-flowing matter towards their magnetic poles. When mass transfer is reduced or ceases altogether, pulsed emission generated by magnetospheric particle acceleration and powered by the star rotation is observed, preferentially in the radio and gamma-ray bands. A few transitional millisecond pulsars that swing between an accretion-powered X-ray pulsar regime and a rotationally powered radio pulsar regime in response to variations of the mass in-flow rate have been recently identified. Here, we report the detection of optical pulsations from a transitional millisecond pulsar. The pulsations were observed when the pulsar was surrounded by an accretion disk, and originated inside the magnetosphere or within a few hundreds of kilometres from it. Energy arguments rule out reprocessing of accretion-powered X-ray emission and argue against a process related to accretion onto the pulsar polar caps; synchrotron emission of electrons in a rotation-powered pulsar magnetosphere seems more likely
In this paper we present the enhanced X-ray Timing and Polarimetry mission. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring effects of QED, and understanding the dynamics of matter in strong-field gravity. In addition to investigating fundamental physics, eXTP will be a very powerful observatory for astrophysics that will provide observations of unprecedented quality on a variety of galactic and extragalactic objects. In particular, its wide field monitoring capabilities will be highly instrumental to detect the electro-magnetic counterparts of gravitational wave sources. The paper provides a detailed description of: 1) The technological and technical aspects, and the expected performance of the instruments of the scientific payload; 2) The elements and functions of the mission, from the spacecraft to the ground segment.X-ray instrumentation, X-ray Polarimetry, X-ray Timing, Space mission: eXTP PACS number(s): 95.55. Ka, 95.85.Nv, 95.75.Hi, 97.60.Jd, 97.60.Lf
PSR J1023+0038 is the first millisecond pulsar discovered to pulsate in the visible band; such a detection took place when the pulsar was surrounded by an accretion disk and also showed X-ray pulsations. We report on the first high time resolution observational campaign of this transitional pulsar in the disk state, using simultaneous observations in the optical (TNG, NOT, TJO), X-ray (XMM-Newton, NuSTAR, NICER), infrared (GTC) and UV (Swift) bands. Optical and X-ray pulsations were detected simultaneously in the X-ray high intensity mode in which the source spends ∼ 70% of the time, and both disappeared in the low mode, indicating a common underlying physical mechanism. In addition, optical and X-ray pulses were emitted within a few km, had similar pulse shape and distribution of the pulsed flux density compatible with a power-law relation F ν ∝ ν −0.7 connecting the optical and the 0.3-45 keV X-ray band. Optical pulses were detected also during flares with a pulsed flux reduced by one third with respect to the high mode; the lack of a simultaneous detection of X-ray pulses is compatible with the lower photon statistics. We show that magnetically channeled accretion of plasma onto the surface of the neutron star cannot account for the optical pulsed luminosity (∼ 10 31 erg s −1 ). On the other hand, magnetospheric rotation-powered pulsar emission would require an extremely efficient conversion of spin-down power into pulsed optical and X-ray emission. We then propose that optical Corresponding author: A. Papitto alessandro.papitto@inaf.it pulsar wind meets the accretion disk, within a few light cylinder radii away, ∼ 100 km, from the pulsar.
We report on the lowest-frequency detection to date of three bursts from the fast radio burst FRB 180916.J0158+65, observed at 328 MHz with the Sardinia Radio Telescope (SRT). The SRT observed the periodic repeater FRB 180916.J0158+65 for five days from 2020 February 20 to 24 during a time interval of active radio bursting, and detected the three bursts during the first hour of observations; no more bursts were detected during the remaining ∼30 hr. Simultaneous SRT observations at 1548 MHz did not detect any bursts. Burst fluences are in the range 37 to 13 Jy ms. No relevant scattering is observed for these bursts. We also present the results of the multi-wavelength campaign we performed on FRB 180916.J0158+65, during the five days of the active window. Simultaneously with the SRT observations, others with different time spans were performed with the Northern Cross at 408 MHz, with XMM-Newton, NICER, INTEGRAL, AGILE, and with the TNG and two optical telescopes in Asiago, which are equipped with fast photometers. XMM-Newton obtained data simultaneously with the three bursts detected by the SRT, and determined a luminosity upper limit in the 0.3–10 keV energy range of ∼1045 erg s−1 for the burst emission. AGILE obtained data simultaneously with the first burst and determined a fluence upper limit in the MeV range for millisecond timescales of . Our results show that absorption from the circumburst medium does not significantly affect the emission from FRB 180916.J0158+65, thus limiting the possible presence of a superluminous supernova around the source, and indicate that a cutoff for the bursting mechanism, if present, must be at lower frequencies. Our multi-wavelength campaign sensitively constrains the broadband emission from FRB 180916.J0158+65, and provides the best limits so far for the electromagnetic response to the radio bursting of this remarkable source of fast radio bursts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.