This paper proposes a very fast and robust multi-people tracking algorithm suitable for mobile platforms equipped with a RGB-D sensor. Our approach features a novel depth-based sub-clustering method explicitly designed for detecting people within groups or near the background and a three-term joint likelihood for limiting drifts and ID switches. Moreover, an online learned appearance classifier is proposed, that robustly specializes on a track while using the other detections as negative examples.\ud Tests have been performed with data acquired from a mobile robot in indoor environments and on a publicly available dataset acquired with three RGB-D sensors and results have been evaluated with the CLEAR MOT metrics. Our method reaches near state of the art performance and very high frame rates in our distributed ROS-based CPU implementation
OpenPTrack is an open source software for multi-camera calibration and people tracking in RGB-D camera networks. It allows to track people in big volumes at sensor frame rate and currently supports a heterogeneous set of 3D sensors. In this work, we describe its user-friendly calibration procedure, which consists of simple steps with real-time feedback that allow to obtain accurate results in estimating the camera poses that are then used for tracking people. On top of a calibration based on moving a checkerboard within the tracking space and on a global optimization of cameras and checkerboards poses, a novel procedure which aligns people detections coming from all sensors in a x-y-time space is used for refining camera poses. While people detection is executed locally, in the machines connected to each sensor, tracking is performed by a single node which takes into account detections from all over the network. Here we detail how a cascade of algorithms working on depth point clouds and color, infrared and disparity images is used to perform people detection from different types of sensors and in any indoor light condition. We present experiments showing that a considerable improvement can be obtained with the proposed calibration refinement procedure that exploits people detections and we compare Kinect v1, Kinect v2 and Mesa SR4500 performance for people tracking applications. OpenPTrack is based on the Robot Operating System and the Point Cloud Library and has already been adopted in networks composed of up to ten imagers for interactive arts, education, culture and human-robot interaction applications.
Color-depth cameras (RGB-D cameras) have become the primary sensors in most robotics systems, from service robotics to industrial robotics applications. Typical consumergrade RGB-D cameras are provided with a coarse intrinsic and extrinsic calibration that generally does not meet the accuracy requirements needed by many robotics applications (e.g., highly accurate 3D environment reconstruction and mapping, high precision object recognition and localization, . . . ). In this paper, we propose a human-friendly, reliable and accurate calibration framework that enables to easily estimate both the intrinsic and extrinsic parameters of a general color-depth sensor couple. Our approach is based on a novel two components error model. This model unifies the error sources of RGB-D pairs based on different technologies, such as structured-light 3D cameras and time-of-flight cameras. Our method provides some important advantages compared to other state-of-the-art systems: it is general (i.e., well suited for different types of sensors), based on an easy and stable calibration protocol, provides a greater calibration accuracy, and has been implemented within the ROS robotics framework. We report detailed experimental validations and performance comparisons to support our statements.
This paper proposes a fast and robust multi-people tracking algorithm for mobile platforms equipped with a RGB-D sensor. Our approach features an efficient point cloud depth-based clustering, an HOG-like classification to robustly initialize a person tracking and a person classifier with online learning to manage the person ID matching even after a full occlusion. For people detection, we make the assumption that people move on a ground plane. Tests are presented on a challenging real-world indoor environment and results have been evaluated with the CLEAR MOT metrics. Our algorithm proved to correctly track 96% of people with very limited ID switches and few false positives, with an average frame rate of 25 fps. Moreover, its applicability to robot-people following tasks have been tested and discussed
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.