Cardiovascular disease is often related to defects of subcellular components in cardiac myocytes, specifically in the dyadic cleft, which include changes in cleft geometry and channel placement. Modeling of these pathological changes requires both spatially resolved cleft as well as whole cell level descriptions. We use a multiscale model to create dyadic structure-function relationships to explore the impact of molecular changes on whole cell electrophysiology and calcium cycling. This multiscale model incorporates stochastic simulation of individual L-type calcium channels and ryanodine receptor channels, spatially detailed concentration dynamics in dyadic clefts, rabbit membrane potential dynamics, and a system of partial differential equations for myoplasmic and lumenal free Ca 2+ and Ca 2+ -binding molecules in the bulk of the cell. We found action potential duration, systolic, and diastolic [Ca 2+ ] to respond most sensitively to changes in L-type calcium channel current. The ryanodine receptor channel cluster structure inside dyadic clefts was found to affect all biomarkers investigated. The shape of clusters observed in experiments by Jayasinghe et al. and channel density within the cluster (characterized by mean occupancy) showed the strongest correlation to the effects on biomarkers.
To assess complex social recognition in mice, we previously developed the SocioBox paradigm. Unexpectedly, 4 weeks after performing in the SocioBox, mice displayed robust social avoidance during Y-maze sociability testing. This unique "sociophobia" acquisition could be documented in independent cohorts. We therefore employed infrared thermography as a non-invasive method of stress-monitoring during SocioBox testing (presentation of five other mice) versus empty box. A higher Centralization Index (body/tail temperature) in the SocioBox correlated negatively with social recognition memory and, after 4 weeks, with social preference in the Y-maze. Assuming that social stimuli might be associated with characteristic thermo-responses, we exposed healthy men (N = 103) with a comparably high intelligence level to a standardized test session including two cognitive tests with or without social component (face versus pattern recognition). In some analogy to the Centralization Index (withinsubject measure) used in mice, the Reference Index (ratio nose/malar cheek temperature) was introduced to determine the autonomic facial response/flushing during social recognition testing. Whereas cognitive performance and salivary cortisol were comparable across human subjects and tests, the Face Recognition Test was associated with a characteristic Reference Index profile. Infrared thermography may have potential for discriminating disturbed social behaviors. K E Y W O R D Sflushing, IRT, social stimulus, stress, temperature, vasoactivity
Abstract. We study the loss of coherence of electrochemical oscillations on meso-and nanosized electrodes with numeric simulations of the electrochemical master equation for a prototypical electrochemical oscillator, the hydrogen peroxide reduction on Pt electrodes in the presence of halides. On nanoelectrodes, the electrode potential changes whenever a stochastic electron-transfer event takes place. Electrochemical reaction rate coefficients depend exponentially on the electrode potential and become thus fluctuating quantities as well. Therefore, also the transition rates between system states become time-dependent which constitutes a fundamental difference to purely chemical nanoscale oscillators. Three implications are demonstrated: (a) oscillations and steady states shift in phase space with decreasing system size, thereby also decreasing considerably the oscillating parameter regions; (b) the minimal number of molecules necessary to support correlated oscillations is more than 10 times as large as for nanoscale chemical oscillators; (c) the relation between correlation time and variance of the period of the oscillations predicted for chemical oscillators in the weak noise limit is only fulfilled in a very restricted parameter range for the electrochemical nano-oscillator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.