Soccer is a complex and exhaustive team-sport requiring a high level of tactical, technical, and physical ability to succeed. During a competitive match, a random combination of explosive and powerful activities, together with technical and tactical gestures, is performed in an intermittent manner over a 90-minute game. This review presents a detailed analysis and up-to-date synthesis of the literature describing activities and energy system contribution during soccer to provide to strength and conditioning coaches a clear understanding of soccer players' physical needs during competition.
Dolci, F, Kilding, AE, Chivers, P, Piggott, B, and Hart, NH. High-intensity interval training shock microcycle for enhancing sport performance: A brief review. J Strength Cond Res 34(4): 1188–1196, 2020—High-intensity interval training (HIIT) is a powerful strategy to develop athletes' fitness and enhance endurance performance. Traditional HIIT interventions involve multiple microcycles (7–10 days long) of 2–3 HIIT sessions each, which have been commonly supported to improve athletic performance after a minimum period of 6 weeks training. Regardless of the efficacy of such an approach, in recent years, a higher frequency of HIIT sessions within a unique microcycle, commonly referred to as an HIIT shock microcycle, has been proposed as an alternative HIIT periodization strategy to induce greater and more efficient endurance adaptation in athletes. This review article provides an insight into this new HIIT periodization strategy by discussing (1) HIIT shock microcycle format and design; (2) the sustainability of this training strategy; (3) effects on performance and physiological parameters of endurance; and (4) potential mechanisms for improvements. Evidence advocates the sustainability and effectiveness of HIIT shock microcycle in different athletes to improve intermittent and continuous running/cycling performance and suggests mitochondria biogenesis as the main acute physiological adaptation following this intervention.
In female basketball the assumed components of success include power, agility, and the proficiency at executing movements using each limb. However, the importance of these attributes in discriminating between playing levels in female basketball have yet to be determined. The purpose of this study was to compare lower body power, change of direction (COD) speed, agility, and lower-body sidedness between basketball athletes participating in Division 1 Collegiate basketball (United States), Women's National Basketball League (WNBL) (Australia), and Women's National Basketball Association (WNBA) (United States). Fifteen female athletes from each league (N = 45) completed a double and single leg counter-movement jump, static jump, drop jump, 5-0-5 COD Test, and an offensive and defensive Agility Test. One-way analysis of variance with post-hoc comparisons, were conducted to compare differences in physical characteristics (height, body mass, age) and performance outcomes (jump, COD, agility assessments) between playing levels. Separate dependent t-tests were performed to compare lower body sidedness (left vs. right lower-limbs) during the single-leg CMJ jumps (vertical jump height) and 5-0-5 COD test for each limb within each playing level. WNBA athletes displayed significantly greater lower body power (P = 0.01 - 0.03) compared to WNBL athletes, significantly faster COD speed (P = 0.02 - 0.03), and offensive and defensive agility performance (P = 0.02 - 0.03) compared to WNBL and Collegiate athletes. WNBL athletes also produced faster defensive agility performance compared to Collegiate athletes (P = 0.02). Further, WNBA and WNBL athletes exhibited reduced lower body sidedness compared to Collegiate athletes. These findings indicate the importance of lower body power, agility, and reduced lower body imbalances to execute more proficient on court movements, required to compete at higher playing levels.
Soccer is an intermittent team-sport, where performance is determined by a myriad of psychological, technical, tactical, and physical factors. Among the physical factors, endurance appears to play a key role into counteracting the fatigue-related reduction in running performance observed during soccer matches. One physiological determinant of endurance is movement economy, which represents the aerobic energy cost to exercise at a given submaximal velocity. While the role of movement economy has been extensively examined in endurance athletes, it has received little attention in soccer players, but may be an important factor, given the prolonged demands of match play. For this reason, the current review discusses the nature, impact, and trainability of movement economy specific to soccer players. A summary of current knowledge and limitations of movement economy in soccer is provided, with an insight into future research directions, to make this important parameter more valuable when assessing and training soccer players’ running performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.