We propose a two-layer, semi-decentralized algorithm to compute a local solution to the Stackelberg equilibrium problem in aggregative games with coupling constraints. Specifically, we focus on a single-leader, multiple-follower problem, and after equivalently recasting the Stackelberg game as a mathematical program with complementarity constraints (MPCC), we iteratively convexify a regularized version of the MPCC as inner problem, whose solution generates a sequence of feasible descent directions for the original MPCC. Thus, by pursuing a descent direction at every outer iteration, we establish convergence to a local Stackelberg equilibrium. Finally, the proposed algorithm is tested on a numerical case study, a hierarchical instance of the charging coordination problem of Plug-in Electric Vehicles (PEVs).
We consider the charge scheduling coordination of a fleet of plug-in electric vehicles, developing a hybrid decision-making framework for efficient and profitable usage of the distribution grid. Each charging dynamics, affected by the aggregate behavior of the whole fleet, is modelled as an inter-dependent, mixed-logical-dynamical system. The coordination problem is formalized as a generalized mixed-integer aggregative potential game, and solved via semi-decentralized implementation of a sequential best-response algorithm that leads to an approximated equilibrium of the game.
This paper considers the multi-vehicle automated driving coordination problem. We develop a distributed, hybrid decision-making framework for safe and efficient autonomous driving of selfish vehicles on multilane highways, where each dynamics is modeled as a mixed-logical-dynamical system. We formalize the coordination problem as a generalized mixed-integer potential game, seeking an equilibrium solution that generates almost individually-optimal mixed-integer decisions, given the safety constraints. Finally, we embed the proposed best-responsebased algorithms within distributed open-and closed-loop control policies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.