We present fully general-relativistic simulations of binary neutron star mergers with a temperature and composition dependent nuclear equation of state. We study the dynamical mass ejection from both quasi-circular and dynamical-capture eccentric mergers. We systematically vary the level of our treatment of the microphysics to isolate the effects of neutrino cooling and heating and we compute the nucleosynthetic yields of the ejecta. We find that eccentric binaries can eject significantly more material than quasi-circular binaries and generate bright infrared and radio emission. In all our simulations the outflow is composed of a combination of tidally-and shock-driven ejecta, mostly distributed over a broad ∼ 60 • angle from the orbital plane, and, to a lesser extent, by thermally driven winds at high latitudes. Ejecta from eccentric mergers are typically more neutron rich than those of quasi-circular mergers. We find neutrino cooling and heating to affect, quantitatively and qualitatively, composition, morphology, and total mass of the outflows. This is also reflected in the infrared and radio signatures of the binary. The final nucleosynthetic yields of the ejecta are robust and insensitive to input physics or merger type in the regions of the second and third r-process peaks. The yields for elements on the first peak vary between our simulations, but none of our models is able to explain the Solar abundances of first-peak elements without invoking additional first-peak contributions from either neutrino and viscously-driven winds operating on longer timescales after the mergers, or from core-collapse supernovae.
We present numerical simulations of binary neutron star mergers, comparing irrotational binaries to binaries of NSs rotating aligned to the orbital angular momentum. For the first time, we study spinning BNSs employing nuclear physics equations of state, namely the ones of Lattimer and Swesty as well as Shen, Horowitz, and Teige. We study mainly equal mass systems leading to a hypermassive neutron star (HMNS), and analyze in detail its structure and dynamics. In order to exclude gauge artifacts, we introduce a novel coordinate system used for post-processing. The results for our equal mass models show that the strong radial oscillations of the HMNS modulate the instantaneous frequency of the gravitational wave (GW) signal to an extend that leads to separate peaks in the corresponding Fourier spectrum. In particular, the high frequency peaks which are often attributed to combination frequencies can also be caused by the modulation of the m = 2 mode frequency in the merger phase. As a consequence for GW data analysis, the offset of the high frequency peak does not necessarily carry information about the radial oscillation frequency. Further, the low frequency peak in our simulations is dominated by the contribution of the plunge and the first 1-2 bounces. The amplitude of the radial oscillations depends on the initial NS spin, which therefore has a complicated influence on the spectrum. Another important result is that HMNSs can consist of a slowly rotating core with an extended, massive envelope rotating close to Keplerian velocity, contrary to the common notion that a rapidly rotating core is necessary to prevent a prompt collapse. Finally, our estimates on the amount of unbound matter show a dependency on the initial NS spin, explained by the influence of the latter on the amplitude of radial oscillations, which in turn cause shock waves.
We present a new approach for achieving high-order convergence in fully generalrelativistic hydrodynamic simulations. The approach is implemented in WhiskyTHC, a new code that makes use of state-of-the-art numerical schemes and was key in achieving, for the first time, higher than second-order convergence in the calculation of the gravitational radiation from inspiraling binary neutron stars [1]. Here, we give a detailed description of the algorithms employed and present results obtained for a series of classical tests involving isolated neutron stars. In addition, using the gravitational-wave emission from the late inspiral and merger of binary neutron stars, we make a detailed comparison between the results obtained with the new code and those obtained when using standard second-order schemes commonly employed for matter simulations in numerical relativity. We find that even at moderate resolutions and for binaries with large compactness, the phase accuracy is improved by a factor 50 or more.PACS numbers: 04.25. Dm, 04.30.Db, 95.30.Lz, 95.30.Sf
We describe in detail the implementation of a simplified approach to radiative transfer in general relativity by means of the well-known neutrino leakage scheme (NLS). In particular, we carry out an extensive investigation of the properties and limitations of the NLS for isolated relativistic stars to a level of detail that has not been discussed before in a general-relativistic context. Although the numerous tests considered here are rather idealized, they provide a well-controlled environment in which to understand the relationship between the matter dynamics and the neutrino emission, which is important in order to model the neutrino signals from more complicated scenarios, such as binary neutron-star mergers. When considering nonrotating hot neutron stars we confirm earlier results of one-dimensional simulations, but also present novel results about the equilibrium properties and on how the cooling affects the stability of these configurations. In our idealized but controlled setup, we can then show that deviations from the thermal and weak-interaction equilibrium affect the stability of these models to radial perturbations, leading models that are stable in the absence of radiative losses, to a gravitational collapse to a black hole when neutrinos are instead radiated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.