Here, we report the antiproliferative/cytotoxic properties of 8-hydroxyquinoline (8-HQ) derivatives on HeLa cells in the presence of transition metal ions (Cu(2+), Fe(3+), Co(2+), Ni(2+)). Two series of ligands were tested, the arylvinylquinolinic L1-L8 and the arylethylenequinolinic L9-L16, which can all interact with metal ions by virtue of the N,O donor set of 8-HQ; however, only L9-L16 are flexible enough to bind the metal in a multidentate fashion, thus exploiting the additional donor functions. L1-L16 were tested for their cytotoxicity on HeLa cancer cells, both in the absence and in the presence of copper. Among them, the symmetric L14 exhibits the highest differential activity between the ligand alone (IC50 = 23.7 μM) and its copper complex (IC50 = 1.8 μM). This latter, besides causing a significant reduction of cell viability, is associated with a considerable accumulation of the metal inside the cells. Metal accumulation is also observed when the cells are incubated with L14 complexed with other late transition metal ions (Fe(3+), Co(2+), Ni(2+)), although the biological response of HeLa cells is different. In fact, while Ni/L14 and Co/L14 exert a cytostatic effect, both Cu/L14 and Fe/L14 trigger a caspase-independent paraptotic process, which results from the induction of a severe oxidative stress and the unfolded protein response.
Organic cation transporters (OCT1-3) mediate the transport of organic cations including inhaled drugs across the cell membrane, although their role in lung epithelium hasn't been well understood yet. We address here the expression and functional activity of OCT1-3 in human airway epithelial cells A549, Calu-3 and NCl-H441. Kinetic and inhibition analyses, employing [(3)H]1-methyl-4-phenylpyridinium (MPP+) as substrate, and the compounds quinidine, prostaglandine E2 (PGE2) and corticosterone as preferential inhibitors of OCT1, OCT2, and OCT3, respectively, have been performed. A549 cells present a robust MPP+ uptake mediated by one high-affinity component (Km~50μM) which is identifiable with OCT3. Corticosterone, indeed, completely inhibits MPP+ transport, while quinidine and PGE2 are inactive and SLC22A3/OCT3 silencing with siRNA markedly lowers MPP+ uptake. Conversely, Calu-3 exhibits both a high (Km<20μM) and a low affinity (Km>0.6mM) transport components, referable to OCT3 and OCT1, respectively, as demonstrated by the inhibition analysis performed at proper substrate concentrations and confirmed by the use of specific siRNA. These transporters are active also when cells are grown under air-liquid interface (ALI) conditions. Only a very modest saturable MPP+ uptake is measurable in NCl-H441 cells and the inhibitory effect of quinidine points to OCT1 as the subtype functionally involved in this model. Finally, the characterization of MPP+ transport in human bronchial BEAS-2B cells suggests that OCT1 and OCT3 are operative. These findings could help to identify in vitro models to be employed for studies concerning the specific involvement of each transporter in drug transportation.
l-Carnitine, in addition to playing a fundamental role in the β-oxidation of fatty acids, has been recently identified as a modulator of immune function, although the mechanisms that underlie this role remain to be clarified. In this study, we addressed the modulation of l-carnitine transport and expression of related transporters during differentiation of human monocytes to macrophages. Whereas monocytes display a modest uptake of l-carnitine, GM-CSF-induced differentiation massively increased the saturable Na-dependent uptake of l-carnitine. Kinetic and inhibition analyses demonstrate that in macrophage l-carnitine transport is mediated by a high-affinity component (K ∼4 µM) that is identifiable with the operation of OCTN2 transporter and a low-affinity component (K > 10 mM) that is identifiable with system A for neutral amino acids. Consistently, both SLC22A5/OCTN2 and SLC38A2/SNAT2 are induced during the differentiation of monocytes to macrophages at gene and protein levels. Elucidation of GM-CSF signaling demonstrates that the cytokine causes the activation of mTOR kinase, leading to the phosphorylation and activation of STAT3, which, in turn, is responsible for OCTN2 transcription. SLC22A5/OCTN2 therefore emerges as a novel member of the set of genes markers of macrophage differentiation.
Carnitine plays a physiologically important role in the β-oxidation of fatty acids, facilitating the transport of long-chain fatty acids across the inner mitochondrial membrane. Distribution of carnitine within the body tissues is mainly performed by novel organic cation transporter (OCTN) family, including the isoforms OCTN1 (SLC22A4) and OCTN2 (SLC22A5) expressed in human. We performed here a characterization of carnitine transport in human airway epithelial cells A549, Calu-3, NCl-H441, and BEAS-2B, by means of an integrated approach combining data of mRNA/protein expression with the kinetic and inhibition analyses of L-[(3)H]carnitine transport. Carnitine uptake was strictly Na(+)-dependent in all cell models. In A549 and BEAS-2B cells, carnitine uptake was mediated by one high-affinity component (Km<2 μM) identifiable with OCTN2. In both these cell models, indeed, carnitine uptake was maximally inhibited by betaine and strongly reduced by SLC22A5/OCTN2 silencing. Conversely, Calu-3 and NCl-H441 exhibited both a high (Km~20 μM) and a low affinity (Km>1 mM) transport component. While the high affinity component is identifiable with OCTN2, the low affinity uptake is mediated by ATB(0,+), a Na(+), and Cl(-)-coupled transport system for neutral and cationic amino acids, as demonstrated by the inhibition by leucine and arginine, as well as by SLC6A14/ATB(0,+) silencing. The presence of this transporter leads to a massive accumulation of carnitine inside the cells and may be of peculiar relevance in pathologic conditions of carnitine deficiency, such as those associated to OCTN2 defects.
Lysinuric protein intolerance (LPI) is a recessively inherited aminoaciduria caused by mutations of SLC7A7, the gene encoding y+LAT1 light chain of system y+L for cationic amino acid transport. The pathogenesis of LPI is still unknown. In this study, we have utilized a gene silencing approach in macrophages and airway epithelial cells to investigate whether complications affecting lung and immune system are directly ascribable to the lack of SLC7A7 or, rather, mediated by an abnormal accumulation of arginine in mutated cells. When SLC7A7/y+LAT1 was silenced in human THP-1 macrophages and A549 airway epithelial cells by means of short interference RNA (siRNA), a significant induction of the expression and release of the inflammatory mediators IL1β and TNFα was observed, no matter the intracellular arginine availability. This effect was mainly regulated at transcriptional level through the activation of NFκB signaling pathway. Moreover, since respiratory epithelial cells are the important sources of chemokines in response to pro-inflammatory stimuli, the effect of IL1β has been addressed on SLC7A7 silenced A549 cells. Results obtained indicated that the downregulation of SLC7A7/y+LAT1 markedly strengthened the stimulatory effect of the cytokine on CCL5/RANTES expression and release without affecting the levels of CXCL8/IL8. Consistently, also the conditioned medium of silenced THP-1 macrophages activated airway epithelial cells in terms of CCL5/RANTES expression due to the presence of elevated amount of proinflammatory cytokines. In conclusion, our results point to a novel thus far unknown function of SLC7A7/y+LAT1, that, under physiological conditions, besides transporting arginine, may act as a brake to restrain inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.