The COVID-19 outbreak has become a global health risk, and understanding the response of the host to the SARS-CoV-2 virus will help to combat the disease. RNA editing by host deaminases is an innate restriction process to counter virus infection, but it is not yet known whether this process operates against coronaviruses. Here, we analyze RNA sequences from bronchoalveolar lavage fluids obtained from coronavirus-infected patients. We identify nucleotide changes that may be signatures of RNA editing: adenosine-to-inosine changes from ADAR deaminases and cytosine-to-uracil changes from APOBEC deaminases. Mutational analysis of genomes from different strains of Coronaviridae from human hosts reveals mutational patterns consistent with those observed in the transcriptomic data. However, the reduced ADAR signature in these data raises the possibility that ADARs might be more effective than APOBECs in restricting viral propagation. Our results thus suggest that both APOBECs and ADARs are involved in coronavirus genome editing, a process that may shape the fate of both virus and patient.
The 2019-nCoV outbreak has become a global health risk. Editing by host deaminases is an innate restriction process to counter viruses, and it is not yet known whether it operates against 15 coronaviruses. Here we analyze RNA sequences from bronchoalveolar lavage fluids derived from two Wuhan patients. We identify nucleotide changes that may be signatures of RNA editing:Adenosine-to-Inosine changes from ADAR deaminases and Cytosine-to-Uracil changes from APOBEC ones. A mutational analysis of genomes from different strains of human-hosted Coronaviridae reveals patterns similar to the RNA editing pattern observed in the 2019-nCoV 20 transcriptomes. Our results suggest that both APOBECs and ADARs are involved in Coronavirus genome editing, a process that may shape the fate of both virus and patient.
GSTP1 belongs to the GSTs family, a group of enzymes involved in detoxification of exogenous substances and it also plays an important role in cell cycle regulation. Its dysregulation correlates with a large variety of tumors, in particular with prostate cancer. We investigated GSTP1 methylation status with methylation specific PCR (MS-PCR) in prostate cancer (PCa) and in benign tissue of 56 prostatectomies. We also performed immunohistochemistry (IHC) so as to correlate gene methylation with gene silencing. GSTP1 appears methylated in PCa and not in healthy tissue; IHC confirmed that methylation leads to protein underexpression (p < 0.001). GSTP1 is highly expressed in basal cell layer and luminal cells in benign glands while in prostatic intraepithelial neoplasia (PIN) it stains only basal cell layer, whereas PCa glands are completely negative. We demonstrated that methylation leads to underexpression of GSTP1. The progressive loss of GSTP1 expression from healthy glands to PIN and to PCa glands underlines its involvement in early carcinogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.