Quantum gates built out of braid group elements form the building blocks of topological quantum computation. They have been extensively studied in SU(2)k quantum group theories, a rich source of examples of non-Abelian anyons such as the Ising (k = 2), Fibonacci (k = 3) and Jones-Kauffman (k = 4) anyons. We show that the fusion spaces of these anyonic systems can be precisely mapped to the product state zero modes of certain Nicolai-like supersymmetric spin chains. As a result, we can realize the braid group in terms of the product state zero modes of these supersymmetric systems. These operators kill all the other states in the Hilbert space, thus preventing the occurrence of errors while processing information, making them suitable for quantum computing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.