Recurrent neural networks are currently subject to intensive research efforts to solve temporal computing problems. Neuromorphic processors (NPs), composed of networked neuron and synapse circuit models, natively compute in time and offer an ultralow power solution particularly suited to emerging temporal edge-computing applications (wearable medical devices, for example). The most significant roadblock to addressing useful problems with neuromorphic hardware is the difficulty in maintaining healthy network dynamics in recurrent neural networks. In animal nervous systems, this is achieved via a multitude of adaptive homeostatic mechanisms which act over multiple time scales to counteract network instability induced via drift, component failure, or learning processes such as spike-timing dependent plasticity. One such mechanism is neuronal intrinsic plasticity (IP) where a neuron adapts its parameters which govern its excitability to fire around a target rate. The approach employed in state of the art NPs, based on a central volatile memory remotely setting model parameters, critically constrains parameter variety and bandwidth rendering realization of these essential mechanisms impossible. This paper demonstrates how reconfigurable nonvolatile resistive memories can be incorporated into neuron and synapse circuits allowing memory to be truly colocalized with the computational units in the computing fabric and facilitating the realization of massively parallel local plasticity mechanisms in neuromorphic hardware. Exploiting nonconventional programming operations of HfO2 based RRAM (stochastic SET and the RESET random variable), we propose a technologically plausible IP algorithm and demonstrate its use in the case of a recurrent neural network topology whereby the system self-organizes to sustain stable and healthy network dynamics around a target firing rate.
Dedicated hardware implementations of spiking neural networks that combine the advantages of mixed-signal neuromorphic circuits with those of emerging memory technologies have the potential of enabling ultra-low power pervasive sensory processing. To endow these systems with additional flexibility and the ability to learn to solve specific tasks, it is important to develop appropriate on-chip learning mechanisms. Recently, a new class of three-factor spike-based learning rules have been proposed that can solve the temporal credit assignment problem and approximate the error back-propagation algorithm on complex tasks. However, the efficient implementation of these rules on hybrid CMOS/memristive architectures is still an open challenge. Here we present a new neuromorphic building block, called PCM-trace, which exploits the drift behavior of phasechange materials to implement long lasting eligibility traces, a critical ingredient of three-factor learning rules. We demonstrate how the proposed approach improves the area efficiency by > 10× compared to existing solutions and demonstrates a technologically plausible learning algorithm supported by experimental data from device measurements.
Real-world sensory-processing applications require compact, low-latency, and low-power computing systems. Enabled by their in-memory event-driven computing abilities, hybrid memristive-Complementary Metal-Oxide Semiconductor neuromorphic architectures provide an ideal hardware substrate for such tasks. To demonstrate the full potential of such systems, we propose and experimentally demonstrate an end-to-end sensory processing solution for a real-world object localization application. Drawing inspiration from the barn owl’s neuroanatomy, we developed a bio-inspired, event-driven object localization system that couples state-of-the-art piezoelectric micromachined ultrasound transducer sensors to a neuromorphic resistive memories-based computational map. We present measurement results from the fabricated system comprising resistive memories-based coincidence detectors, delay line circuits, and a full-custom ultrasound sensor. We use these experimental results to calibrate our system-level simulations. These simulations are then used to estimate the angular resolution and energy efficiency of the object localization model. The results reveal the potential of our approach, evaluated in orders of magnitude greater energy efficiency than a microcontroller performing the same task.
Learning is a fundamental component of creating intelligent machines. Biological intelligence orchestrates synaptic and neuronal learning at multiple time scales to self-organize populations of neurons for solving complex tasks. Inspired by this, we design and experimentally demonstrate an adaptive hardware architecture Memristive Self-organizing Spiking Recurrent Neural Network (MEMSORN). MEMSORN incorporates resistive memory (RRAM) in its synapses and neurons which configure their state based on Hebbian and Homeostatic plasticity respectively. For the first time, we derive these plasticity rules directly from the statistical measurements of our fabricated RRAM-based neurons and synapses. These "technologically plausible” learning rules exploit the intrinsic variability of the devices and improve the accuracy of the network on a sequence learning task by 30%. Finally, we compare the performance of MEMSORN to a fully-randomly-set-up spiking recurrent network on the same task, showing that self-organization improves the accuracy by more than 15%. This work demonstrates the importance of the device-circuit-algorithm co-design approach for implementing brain-inspired computing hardware.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.