Topic modeling is a widely used technique to extract relevant information from large arrays of data. The problem of finding a topic structure in a dataset was recently recognized to be analogous to the community detection problem in network theory. Leveraging on this analogy, a new class of topic modeling strategies has been introduced to overcome some of the limitations of classical methods. This paper applies these recent ideas to TCGA transcriptomic data on breast and lung cancer. The established cancer subtype organization is well reconstructed in the inferred latent topic structure. Moreover, we identify specific topics that are enriched in genes known to play a role in the corresponding disease and are strongly related to the survival probability of patients. Finally, we show that a simple neural network classifier operating in the low dimensional topic space is able to predict with high accuracy the cancer subtype of a test expression sample.
Large scale data on single-cell gene expression have the potential to unravel the specific transcriptional programs of different cell types. The structure of these expression datasets suggests a similarity with several other complex systems that can be analogously described through the statistics of their basic building blocks. Transcriptomes of single cells are collections of messenger RNA abundances transcribed from a common set of genes just as books are different collections of words from a shared vocabulary, genomes of different species are specific compositions of genes belonging to evolutionary families, and ecological niches can be described by their species abundances. Following this analogy, we identify several emergent statistical laws in single-cell transcriptomic data closely similar to regularities found in linguistics, ecology or genomics. A simple mathematical framework can be used to analyze the relations between different laws and the possible mechanisms behind their ubiquity. Importantly, treatable statistical models can be useful tools in transcriptomics to disentangle the actual biological variability from general statistical effects present in most component systems and from the consequences of the sampling process inherent to the experimental technique.
The integration of transcriptional data with other layers of information, such as the post-transcriptional regulation mediated by microRNAs, can be crucial to identify the driver genes and the subtypes of complex and heterogeneous diseases such as cancer. This paper presents an approach based on topic modeling to accomplish this integration task. More specifically, we show how an algorithm based on a hierarchical version of stochastic block modeling can be naturally extended to integrate any combination of ’omics data. We test this approach on breast cancer samples from the TCGA database, integrating data on messenger RNA, microRNAs, and copy number variations. We show that the inclusion of the microRNA layer significantly improves the accuracy of subtype classification. Moreover, some of the hidden structures or “topics” that the algorithm extracts actually correspond to genes and microRNAs involved in breast cancer development and are associated to the survival probability.
Large scale data on single-cell gene expression have the potential to unravel the specific transcriptional programs of different cell types. The structure of these expression datasets suggests a similarity with several other complex systems that can be analogously described through the statistics of their basic building blocks. Transcriptomes of single cells are collections of messenger RNA abundances transcribed from a common set of genes just as books are different collections of words from a shared vocabulary, genomes of different species are specific compositions of genes belonging to evolutionary families, and ecological niches can be described by their species abundances. Following this analogy, we identify several emergent statistical laws in single-cell transcriptomic data closely similar to regularities found in linguistics, ecology or genomics. A simple mathematical framework can be used to analyze the relations between different laws and the possible mechanisms behind their ubiquity. Importantly, treatable statistical models can be useful tools in transcriptomics to disentangle the actual biological variability from general statistical effects present in most component systems and from the consequences of the sampling process inherent to the experimental technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.