Context. Thanks to the large collecting area (3 × ∼1500 cm 2 at 1.5 keV) and wide field of view (30 across in full field mode) of the X-ray cameras on board the European Space Agency X-ray observatory XMM-Newton, each individual pointing can result in the detection of up to several hundred X-ray sources, most of which are newly discovered objects. Since XMM-Newton has now been in orbit for more than 15 yr, hundreds of thousands of sources have been detected. Aims. Recently, many improvements in the XMM-Newton data reduction algorithms have been made. These include enhanced source characterisation and reduced spurious source detections, refined astrometric precision of sources, greater net sensitivity for source detection, and the extraction of spectra and time series for fainter sources, both with better signal-to-noise. Thanks to these enhancements, the quality of the catalogue products has been much improved over earlier catalogues. Furthermore, almost 50% more observations are in the public domain compared to 2XMMi-DR3, allowing the XMM-Newton Survey Science Centre to produce a much larger and better quality X-ray source catalogue. Methods. The XMM-Newton Survey Science Centre has developed a pipeline to reduce the XMM-Newton data automatically. Using the latest version of this pipeline, along with better calibration, a new version of the catalogue has been produced, using XMM-Newton X-ray observations made public on or before 2013 December 31. Manual screening of all of the X-ray detections ensures the highest data quality. This catalogue is known as 3XMM. Results. In the latest release of the 3XMM catalogue, 3XMM-DR5, there are 565 962 X-ray detections comprising 396 910 unique X-ray sources. Spectra and lightcurves are provided for the 133 000 brightest sources. For all detections, the positions on the sky, a measure of the quality of the detection, and an evaluation of the X-ray variability is provided, along with the fluxes and count rates in 7 X-ray energy bands, the total 0.2-12 keV band counts, and four hardness ratios. With the aim of identifying the detections, a cross correlation with 228 catalogues of sources detected in all wavebands is also provided for each X-ray detection. Conclusions. 3XMM-DR5 is the largest X-ray source catalogue ever produced. Thanks to the large array of data products associated with each detection and each source, it is an excellent resource for finding new and extreme objects.Key words. catalogs -astronomical databases: miscellaneous -surveys -X-rays: general Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA.The catalogue is available at http://cdsarc.u-strasbg.fr/ viz-bin/VizieR?-meta.foot&-source=IX/46
Aims. In light of recent discoveries of pulsating ultraluminous X-ray sources (ULXs) and recently introduced theoretical schemes that propose neutron stars (NSs) as the central engines of ULXs, we revisit the spectra of eighteen well known ULXs, in search of indications that favour this newly emerging hypothesis. Methods. We examine the spectra from high-quality XMM-Newton and NuSTAR observations. We use a combination of elementary black body and multicolour disk black body (MCD) models, to diagnose the predictions of classic and novel theoretical models of accretion onto NSs. We re-interpret the well established spectral characteristics of ULXs in terms of accretion onto lowly or highly magnetised NSs, and explore the resulting parameter space for consistency. Results. We confirm the previously noted presence of the low-energy ( 6 keV) spectral rollover and argue that it could be interpreted as due to thermal emission. The spectra are well described by a double thermal model consisting of a "hot" ( 1 keV) and a "cool" ( 0.7 keV) multicolour black body (MCB). Under the assumption that the "cool" MCD emission originates in a disk truncated at the neutron star magnetosphere, we find that all ULXs in our sample are consistent with accretion onto a highly magnetised (B 10 12 G) neutron star. We note a strong correlation between the strength of the magnetic field, the temperature of the "hot" thermal component and the total unabsorbed luminosity. Examination of the NuSTAR data supports this interpretation and also confirms the presence of a weak, high-energy ( 15 keV) tail, most likely the result of modification of the MCB emission by inverse Compton scattering. We also note that the apparent high-energy tail, may simply be the result of mismodelling of MCB emission with an atypical temperature (T ) versus radius (r) gradient, using a standard MCD model with a fixed gradient of T ∼r −0.75 . Conclusions. We have offered a new and robust physical interpretation for the dual-thermal spectra of ULXs. We find that the best-fit derived parameters of our model, are in excellent agreement with recent theoretical predictions that favour super-critically accreting NSs as the engines of a large fraction of ULXs. Nevertheless, the considerable degeneracy between models and the lack of unequivocal evidence cannot rule out other equally plausible interpretations. Deeper broadband observations and time-resolved spectroscopy are warranted to further explore this newly emerging framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.