Establishing specific cell lineages from human induced pluripotent stem cells (hiPSCs) is vital for cell therapy approaches in regenerative medicine, particularly for neurodegenerative disorders. While neural precursors have been induced from hiPSCs, the establishment of hiPSC-derived human neural stem cells (hiNSCs), with characteristics that match foetal hNSCs and abide by cGMP standards, thus allowing clinical applications, has not been described. We generated hiNSCs by a virus-free technique, whose properties recapitulate those of the clinical-grade hNSCs successfully used in an Amyotrophic Lateral Sclerosis (ALS) phase I clinical trial. Ex vivo, hiNSCs critically depend on exogenous mitogens for stable self-renewal and amplification and spontaneously differentiate into astrocytes, oligodendrocytes and neurons upon their removal. In the brain of immunodeficient mice, hiNSCs engraft and differentiate into neurons and glia, without tumour formation. These findings now warrant the establishment of clinical-grade, autologous and continuous hiNSC lines for clinical trials in neurological diseases such as Huntington’s, Parkinson’s and Alzheimer’s, among others.
The gastrokine 1 (GKN1) protein is important for maintaining the physiological function of the gastric mucosa. GKN1 is down-regulated in gastric tumor tissues and derived cell lines and its over-expression in gastric cancer cells induces apoptosis, suggesting a possible role for the protein as a tumor suppressor. However, the mechanism by which GKN1 is inactivated in gastric cancer remains unknown. Here, we investigated the causes of GKN1 silencing to determine if epigenetic mechanisms such as histonic modification could contribute to its down-regulation. To this end, chromatin immunoprecipitation assays for the trimethylation of histone 3 at lysine 9 (H3K9triMe) and its specific histone-lysine N-methyltransferase (SUV39H1) were performed on biopsies of normal and cancerous human gastric tissues. GKN1 down-regulation in gastric cancer tissues was shown to be associated with high levels of H3K9triMe and with the recruitment of SUV39H1 to the GKN1 promoter, suggesting the presence of an epigenetic transcriptional complex that negatively regulates GKN1 expression in gastric tumors. The inhibition of histone deacetylases with trichostatin A was also shown to increase GKN1 mRNA levels. Collectively, our results indicate that complex epigenetic machinery regulates GKN1 expression at the transcriptional level, and likely at the translational level.
Gastrokine-1 (GKN1), a protein expressed in normal gastric tissue, but absent in gastric cancer tissues and derived cell lines, has recently emerged as a potential biomarker for gastric cancer. To better establish the molecular properties of GKN1, the first protocol for the production of mature human GKN1 in the expression system of Pichia pastoris was settled. The recombinant protein showed anti-proliferative properties specifically on gastric cancer cell lines thus indicating that it was properly folded. Characterization of structural and biochemical properties of recombinant GKN1 was achieved by limited proteolysis analysis, circular dichroism and fluorescence spectroscopy. The analysis of GKN1 primary structure coupled to proteolytic experiments highlighted that GKN1 was essentially resistant to proteolytic enzymes and showed the presence of at least a disulphide bond between Cys61 and one of the other three Cys (Cys122, Cys145 and Cys159) of the molecule. The secondary structure analysis revealed a prevailing β-structure. Spectroscopic and calorimetric investigations on GKN1 thermal denaturation pointed out its high thermal stability and suggested a more complex than a two-state unfolding process. The resulting protein was endowed with a globular structure characterized by domains showing different stabilities toward chemical and physical denaturants. These results are in agreement with the prediction of GKN1 secondary structure and a three-dimensional structure model. Our findings provide the basis for the development of new pharmaceutical compounds of potential use for gastric cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.