Despite significant research advances on the seismic response analysis, there is still an urgent need for validation of numerical simulation methods for prediction of earthquake response and damage. In this respect, seismic monitoring networks and proper modelling can further support validation studies, allowing more realistic simulations of what earthquakes can produce. This paper discusses the seismic response of the “Pietro Capuzi” school in Visso, a village located in the Marche region (Italy) that was severely damaged by the 2016–2017 Central Italy earthquake sequence. The school was a two-story masonry structure founded on simple enlargements of its load-bearing walls, partially embedded in the alluvial loose soils of the Nera river. The structure was monitored as a strategic building by the Italian Seismic Observatory of Structures (OSS), which provided acceleration records under both ambient noise and the three mainshocks of the seismic sequence. The evolution of the damage pattern following each one of the three mainshocks was provided by on-site survey integrated by OSS data. Data on the dynamic soil properties was available from the seismic microzonation study of the Visso village and proved useful in the development of a reliable geotechnical model of the subsoil. The equivalent frame (EF) approach was adopted to simulate the nonlinear response of the school building through both fixed-base and compliant-base models, to assess the likely influence of soil–structure interaction on the building performance. The ambient noise records allowed for an accurate calibration of the soil–structure model. The seismic response of the masonry building to the whole sequence of the three mainshocks was then simulated by nonlinear time history analyses by using the horizontal accelerations recorded at the underground floor as input motions. Numerical results are validated against the evidence on structural response in terms of both incremental damage and global shear force–displacement relationships. The comparisons are satisfactory, corroborating the reliability of the compliant-base approach as applied to the EF model and its computational efficiency to simulate the soil–foundation–structure interaction in the case of masonry buildings.
The Central Italy earthquake sequence initiated on 24 August 2016 with a moment magnitude M6.1 event, followed by two earthquakes (M5.9 and M6.5) on 26 and 30 October, caused significant damage and loss of life in the town of Amatrice and other nearby villages and hamlets. The significance of this sequence led to a major international reconnaissance effort to thoroughly examine the effects of this disaster. Specifically, this paper presents evidences of strong local site effects (i.e., amplification of seismic waves because of stratigraphic and topographic effects that leads to damage concentration in certain areas). It also examines the damage patterns observed along the entire sequence of events in association with the spatial distribution of ground motion intensity with emphasis on the clearly distinct performance of reinforced concrete and masonry structures under multiple excitations. The paper concludes with a critical assessment of past retrofit measures efficiency and a series of lessons learned as per the behavior of structures to a sequence of strong earthquake events.
The Central Italy earthquake sequence nominally began on 24 August 2016 with a M6.1 event on a normal fault that produced devastating effects in the town of Amatrice and several nearby villages and hamlets. A major international response was undertaken to record the effects of this disaster, including surface faulting, ground motions, landslides, and damage patterns to structures. This work targeted the development of high-value case histories useful to future research. Subsequent events in October 2016 exacerbated the damage in previously affected areas and caused damage to new areas in the north, particularly the relatively large town of Norcia. Additional reconnaissance after a M6.5 event on 30 October 2016 documented and mapped several large landslide features and increased damage states for structures in villages and hamlets throughout the region. This paper provides an overview of the reconnaissance activities undertaken to document and map these and other effects, and highlights valuable lessons learned regarding faulting and ground motions, engineering effects, and emergency response to this disaster.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.