Leptin is the primary signal through which the hypothalamus senses nutritional state and modulates food intake and energy balance. Leptin reduces food intake by upregulating anorexigenic (appetite-reducing) neuropeptides, such as alpha-melanocyte-stimulating hormone, and downregulating orexigenic (appetite-stimulating) factors, primarily neuropeptide Y. Genetic defects in anorexigenic signalling, such as mutations in the melanocortin-4 (ref. 5) or leptin receptors, cause obesity. However, alternative orexigenic pathways maintain food intake in mice deficient in neuropeptide Y. CB1 cannabinoid receptors and the endocannabinoids anandamide and 2-arachidonoyl glycerol are present in the hypothalamus, and marijuana and anandamide stimulate food intake. Here we show that following temporary food restriction, CB1 receptor knockout mice eat less than their wild-type littermates, and the CB1 antagonist SR141716A reduces food intake in wild-type but not knockout mice. Furthermore, defective leptin signalling is associated with elevated hypothalamic, but not cerebellar, levels of endocannabinoids in obese db/db and ob/ob mice and Zucker rats. Acute leptin treatment of normal rats and ob/ob mice reduces anandamide and 2-arachidonoyl glycerol in the hypothalamus. These findings indicate that endocannabinoids in the hypothalamus may tonically activate CB1 receptors to maintain food intake and form part of the neural circuitry regulated by leptin.
The vanilloid receptor VR1 is a nonselective cation channel that is most abundant in peripheral sensory fibers but also is found in several brain nuclei. VR1 is gated by protons, heat, and the pungent ingredient of ''hot'' chili peppers, capsaicin. To date, no endogenous compound with potency at this receptor comparable to that of capsaicin has been identified. Here we examined the hypothesis, based on previous structure-activity relationship studies and the availability of biosynthetic precursors, that N-arachidonoyl-dopamine (NADA) is an endogenous ''capsaicin-like'' substance in mammalian nervous tissues. We found that NADA occurs in nervous tissues, with the highest concentrations being found in the striatum, hippocampus, and cerebellum and the lowest concentrations in the dorsal root ganglion. We also gained evidence for the existence of two possible routes for NADA biosynthesis and mechanisms for its inactivation in rat brain. NADA activates both human and rat VR1 overexpressed in human embryonic kidney (HEK)293 cells, with potency (EC50 Ϸ 50 nM) and efficacy similar to those of capsaicin. Furthermore, NADA potently activates native vanilloid receptors in neurons from rat dorsal root ganglion and hippocampus, thereby inducing the release of substance P and calcitonin gene-related peptide (CGRP) from dorsal spinal cord slices and enhancing hippocampal paired-pulse depression, respectively. Intradermal NADA also induces VR1-mediated thermal hyperalgesia (EC50 ؍ 1.5 ؎ 0.3 g). Our data demonstrate the existence of a brain substance similar to capsaicin not only with respect to its chemical structure but also to its potency at VR1 receptors. V anilloid receptors of type 1 (VR1) are nonselective cation channels, expressed in peripheral sensory C and A␦ fibers and gated by nociceptive stimuli such as low pH, heat, and some plant toxins, of which capsaicin, the pungent principle of chili peppers, is the best known example (1-4). Evidence obtained by several laboratories and using different techniques (5-10) showed that VR1 is present also in the central nervous system, where it is unlikely to be the target of noxious heat and low pH, thus suggesting the existence of brain endogenous agonists for this receptor (11). Indeed, lipid mediators previously known to serve other functions in the brain, i.e., the endocannabinoid anandamide and some lipoxygenase derivatives, activate VR1, albeit with a potency considerably lower than that of capsaicin (12)(13)(14). The antinociceptive effects of VR1 blockers in two models of inflammatory hyperalgesia (15, 16) suggest that ''endovanilloids'' might be produced also by peripheral tissues and act in concert with locally enhanced temperature and acidity during inflammation.If an endovanilloid did exist, what would be the structural prerequisites that would allow for an optimal interaction with vanilloid receptors? Structure-activity relationship studies for vanilloid receptors have indicated that both the vanillyl-amine moiety and a long, unsaturated acyl chain are necessary to...
1 Endocannabinoids are implicated in appetite and body weight regulation. In rodents, anandamide stimulates eating by actions at central CB1 receptors, and hypothalamic endocannabinoids may be under the negative control of leptin. However, changes to brain endocannabinoid levels in direct relation to feeding or changing nutritional status have not been investigated. 2 We measured anandamide and 2-arachidonoyl glycerol (2-AG) levels in feeding-associated brain regions of rats, during fasting, feeding of a palatable food, or after satiation. Endocannabinoid levels were compared to those in rats fed ad libitum, at a point in their daily cycle when motivation to eat was absent. Fasting increased levels of anandamide and 2-AG in the limbic forebrain and, to a lesser extent, of 2-AG in the hypothalamus. By contrast, hypothalamic 2-AG declined as animals ate. No changes were detected in satiated rats. Endocannabinoid levels in the cerebellum, a control region not directly involved in the control of food intake, were una ected by any manipulation. 3 As 2-AG was most sensitive to variation during feeding, and to leptin regulation in a previous study, we examined the behavioural e ects of 2-AG when injected into the nucleus accumbens shell, a limbic forebrain area strongly linked to eating motivation. 2-AG potently, and dose-dependently, stimulated feeding. This e ect was attenuated by the CB1 receptor antagonist SR141716. 4 These ®ndings provide the ®rst direct evidence of altered brain levels of endocannabinoids, and of 2-AG in particular, during fasting and feeding. The nature of these e ects supports a role for endocannabinoids in the control of appetitive motivation.
The cannabinoid CB2 receptor (CB2R) represents a promising therapeutic target for various forms of tissue injury and inflammatory diseases. Although numerous compounds have been developed and widely used to target CB2R, their selectivity, molecular mode of action and pharmacokinetic properties have been poorly characterized. Here we report the most extensive characterization of the molecular pharmacology of the most widely used CB2R ligands to date. In a collaborative effort between multiple academic and industry laboratories, we identify marked differences in the ability of certain agonists to activate distinct signalling pathways and to cause off-target effects. We reach a consensus that HU910, HU308 and JWH133 are the recommended selective CB2R agonists to study the role of CB2R in biological and disease processes. We believe that our unique approach would be highly suitable for the characterization of other therapeutic targets in drug discovery research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.