Cork oak (Quercus suber) is native to southwest Europe and northwest Africa where it plays a crucial environmental and economical role. To tackle the cork oak production and industrial challenges, advanced research is imperative but dependent on the availability of a sequenced genome. To address this, we produced the first draft version of the cork oak genome. We followed a de novo assembly strategy based on high-throughput sequence data, which generated a draft genome comprising 23,347 scaffolds and 953.3 Mb in size. A total of 79,752 genes and 83,814 transcripts were predicted, including 33,658 high-confidence genes. An InterPro signature assignment was detected for 69,218 transcripts, which represented 82.6% of the total. Validation studies demonstrated the genome assembly and annotation completeness and highlighted the usefulness of the draft genome for read mapping of high-throughput sequence data generated using different protocols. All data generated is available through the public databases where it was deposited, being therefore ready to use by the academic and industry communities working on cork oak and/or related species.
BackgroundCork oak (Quercus suber) is one of the rare trees with the ability to produce cork, a material widely used to make wine bottle stoppers, flooring and insulation materials, among many other uses. The molecular mechanisms of cork formation are still poorly understood, in great part due to the difficulty in studying a species with a long life-cycle and for which there is scarce molecular/genomic information. Cork oak forests are of great ecological importance and represent a major economic and social resource in Southern Europe and Northern Africa. However, global warming is threatening the cork oak forests by imposing thermal, hydric and many types of novel biotic stresses. Despite the economic and social value of the Q. suber species, few genomic resources have been developed, useful for biotechnological applications and improved forest management.ResultsWe generated in excess of 7 million sequence reads, by pyrosequencing 21 normalized cDNA libraries derived from multiple Q. suber tissues and organs, developmental stages and physiological conditions. We deployed a stringent sequence processing and assembly pipeline that resulted in the identification of ~159,000 unigenes. These were annotated according to their similarity to known plant genes, to known Interpro domains, GO classes and E.C. numbers. The phylogenetic extent of this ESTs set was investigated, and we found that cork oak revealed a significant new gene space that is not covered by other model species or EST sequencing projects. The raw data, as well as the full annotated assembly, are now available to the community in a dedicated web portal at http://www.corkoakdb.org.ConclusionsThis genomic resource represents the first trancriptome study in a cork producing species. It can be explored to develop new tools and approaches to understand stress responses and developmental processes in forest trees, as well as the molecular cascades underlying cork differentiation and disease response.
Plants exude a variety of substances through their external surfaces and from germinating seeds, some of which have an inhibitory action against plant pathogens. The aim of this study was the investigation and characterization of defense proteins present in exudates from roots of cowpea seedlings (Vigna unguiculata (L.) Walp.). Root exudates were collected from seedlings that were grown hydroponically in three different media, including, 100 mM sodium acetate buffer pH 4.5, water pH 6.0 and 100 mM sodium phosphate buffer pH 7.5. The proteins from these exudates were analyzed by SDS-PAGE and SDS-Tricine-PAGE and the presence of antimicrobial proteins in the exudates was investigated by immunological and enzymatic assays. Results showed that roots from cowpea seedlings contained b-1,3-Glucanases, chitinases and lipid transfer proteins (LTPs), all of which may potentially function as plant defense proteins. Immunolocalization of one of these proteins, chitinase, revealed its presence in the xylem cell wall vessel elements. These exudates also demonstrated an inhibitory effect on the growth of the fungus, Fusarium oxysporum, in vitro. The results suggest that plant roots may exude a variety of proteins that may function to repress the growth of root pathogenic fungi.
The identification and phylogenetic relationships of potato cyst nematodes (PCN) were studied to assess the potential value of geographical distribution information for integrated pest management of potato production in Portugal. This research focused on PCN species, Globodera pallida and Globodera rostochiensis. From 2013 until 2019, 748 soil samples from the rhizosphere of different potato cultivars were surveyed in the Portuguese mainland to detect and identify both species and track their location. PCN are widespread invasive species throughout Portugal. In fact, during the survey period an incidence of 22.5% was estimated for the tested samples. The patterns of infestation vary among regions, increasing from south to north, where PCN were first detected. Currently, both species are present in all potato producing regions of the country, with a greater incidence of G. pallida. Phytosanitary control measures are influencing to the observed results. The use of potato cultivars resistant to G. rostochiensis led to a decrease of this species but had no influence on G. pallida detections, which continues its reproduction freely since there are no effective resistant cultivars for this species. The relationship between the presence, infestation rate, spread and geographical distribution of PCN is discussed in terms of behavioral responses of the potato cultivars and the implications for developing new integrated crop protection measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.