Factors tuning the functional performances of the various TiO2-based materials in the wide range of their possible applications are poorly understood. Here the electronic structure of TiO2-based materials characterized by Ti3+ self-doping, obtained by a sol–gel route wholly performed in air at room temperature, is reported. In the amorphous hybrid TiO2–acetylacetonate (HSGT) material the formation of the Ti(IV)–acac complex makes it photoresponsive to visible light and allows us to obtain by means of a simple annealing in air at 400 °C a very stable black Ti3+ self-doped anatase TiO2 nanomaterial (HSGT-400), characterized by an extraordinary high concentration of Ti atoms with oxidation states lower than IV (about 26%), which absorbs light in the entire visible range. The very high stability of HSGT-400 is mainly related to the process, which does not require the use of harsh conditions nor external reducing agents. The electronic structure of HSGT, owing to the presence of the Ti(IV)–acac complex, allows the stabilization of superoxide anion radicals on its surface for a very long time (months) at room temperature. The extraordinary low recombination rate of electron–hole pairs gives to HSGT unusual catalytic performances at room temperature allowing the complete removal of 2,4-dichlorophenol from water in about one hour without any light irradiation. Our results clearly highlight the connection among the production process of TiO2-based materials, their electronic structure and, finally, their functional behaviour
ABSTRACT:The low temperatures of polar regions and high altitude environments, especially icy habitats, present challenges for many microorganisms. Their ability to live under subfreezing conditions implies the production of compounds conferring cryotolerance. Colwellia psychrerythraea 34H, a -proteobacterium isolated from subzero Arctic marine sediments, provides a model for the study of life in cold environments. We report here the identification and detailed molecular primary and secondary structures of capsular polysaccharide from C. psychrerythraea 34H cells. The polymer was isolated in the water layer when cells were extracted by phenol/water and characterized by one-and two-dimensional NMR spectroscopy together with chemical analysis. Molecular mechanic and dynamic calculations were also performed. The polysaccharide consists of a tetrasaccharidic repeating unit containing two amino sugars and two uronic acids bearing threonine as substituent. The structural features of this unique polysaccharide resemble those present in antifreeze proteins and glycoproteins. These results suggest a possible correlation between the capsule structure and the ability of C. psychrerythraea to colonize subfreezing marine environments.
β-Glucosidase (BG) was immobilized by adsorption on wrinkled silica nanoparticles (WSNs) giving an active and stable biocatalyst for the hydrolysis of cellobiose. WSNs exhibiting both a central-radial pore structure and a hierarchical trimodal micro-/ mesoporous pore size distribution were synthesized. They were used as a matrix to immobilize BG, obtaining a biocatalyst (BG/WSNs) containing 150 mg of enzyme per gram of matrix. A complete textural and morphological characterization of BG/WSNs performed by the Brunauer−Emmett−Teller (BET) method, thermogravimetric (TG), Fourier transform infrared (FT-IR), and transmission electron microscopy (TEM) analyses showed that this matrix can generate a microenvironment particularly suitable for this enzyme. The immobilization procedure used allowed preserving most of the secondary structure of the enzyme and, consequently, its catalytic activity. The kinetic parameters of the cellobiose hydrolysis performed with the biocatalyst were determined and compared with those of the free enzyme. It was found that the apparent K M value of the biocatalyst was slightly lower than that of the free enzyme, indicating that the enzyme−substrate affinity was increased. A complete hydrolysis of cellobiose was observed for four consecutive runs, showing a high operational stability of the biocatalyst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.