As a method of qualitative research, video offers a means of looking into the world of a respondent and a means of stimulating a dialogue, both with the respondent and others. Video requires, however, the application of additional ethical procedures and may also increase refusal rates, if it is publicly disseminated. Applied to the home, the use of video reveals both practice and identity. Video records practice, showing how the spaces within a home are used at a particular time. For this reason, video is well adapted to understanding the implications of living in a home with an innovative design and technology, with all the complexities that this commonly involves. Equally, video communicates the appearance of the home and of its occupants to whoever is watching. Video is, therefore, intimately connected to identity and the home as a place.
This paper presents the results of field monitoring of repair patches in two reinforced concrete highway bridges, Lawns Lane Bridge on the M1 and Gunthorpe Bridge across the River Trent. The repairs were applied by spraying (guniting) repair materials to compression members of the bridges. The structural members were unpropped during repair and throughout the 60 week monitoring period. The strains in the repair patches were monitored with vibrating-wire gauges. Four different repair materials were investigated whose elastic modulus was greater than that of the substrate concrete (E rm. E sub). The results show that efficient repairs are achieved with E rm. E sub , the optimum relationship being E rm. 1 X 3E sub. This enables the repair material to shed a significant proportion of its shrinkage strain to the substrate, thereby reducing restrained-shrinkage tension. It also enables the repair to attract externally applied load from the substrate in the long term. The effect of creep and shrinkage on the performance of the repair patch is also determined. Overall, the results show that current repair standards have limitations with respect to repair material specifications.
Cathodic protection has been proven to be one of the most widely applicable and cost-effective solutions for tackling steel corrosion in reinforced concrete. In this study, the possible use of carbon fibre composites, which are primarily used to strengthen concrete members, has been investigated as impressed current cathodic protection anodes. Carbon fibre anodes have been assessed in both concrete and calcium hydroxide solution. Two bonding mediums incorporating epoxy and geopolymer have also been investigated. The results demonstrate that epoxy resin can be used for bonding carbon fibre fabric anodes to reinforced concrete structures while geopolymer is more effective for bonding carbon fibre reinforced polymer (CFRP) rod into preformed grooves in the concrete surface. The dissolution of carbon fibre anode appears to stablise after a period of time, dependent upon the size and shape of the anode and applied voltage and current. Based on the present results, a maximum current density of 128 mA/m2 of reinforcing steel area is recommended for the operation of CFRP fabric anode and 64 mA/m2 of reinforcing steel area for that of CFRP rod anode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.