Currently, the water level monitoring system for a river uses instruments installed on the banks of the river and must be checked continuously and manually. This study proposes a real-time water level detection system based on a computer vision algorithm. In the proposed system, we use color object tracking technique with a bar indicator as a reference’s level. We set three bar indicators to determine the status of the water level, namely NORMAL, ALERT and DANGER. A camera was installed across the bar level indicators to capture bar indicator and monitoring the water level. In the simulation, the monitoring system was installed in 5-100 lux lighting conditions. For experimental purposes, we set various distances of the camera, which is set of 40-80 centimeters and the camera angle is set of 30-60 degrees. The experiment results showed that this system has an accuracy of 94% at camera distance is in range 50-80 centimeters and camera angle is 60o. Based on these results, it can be concluded that this proposed system can determine the water level well in varying lighting conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.