IL-12 is a heterodimeric cytokine produced by APC that critically regulates cell-mediated immunity. Because of its crucial function during immune responses, IL-12 production is stringently regulated, in part through transcriptional control of its p35 subunit, which requires the differentiative effects of IFN-γ for expression. To determine whether post-transcriptional aspects of IL-12 production might be regulated, we examined intracellular protein processing of each subunit. We report here that p40 and p35 subunits are processed by disparate pathways. Whereas processing of p40 conforms to the cotranslational model of signal peptide removal concomitant with translocation into the endoplasmic reticulum (ER), processing of p35 does not. Translocation of the p35 preprotein into the ER was not accompanied by cleavage of the signal peptide; rather, removal of the p35 signal peptide occurred via two sequential cleavages. The first cleavage took place within the ER, and the cleavage site localized to the middle of the hydrophobic region of the signal peptide. Although the preprotein was glycosylated upon entry into the ER, its glycosylation status did not affect primary cleavage. Subsequently, the remaining portion of the p35 signal peptide was removed by a second cleavage, possibly involving a metalloprotease, concomitant with additional glycosylation and secretion. Secretion could be inhibited by mutation of the second cleavage site or by inhibition of glycosylation with tunicamycin. In contrast, p40 secretion was not affected by inhibition of glycosylation. Our findings demonstrate that IL-12 subunits are processed by disparate pathways and suggest new modalities for regulation of IL-12 production.
Interleukin-12 (IL-12) production by human monocytes is stringently regulated through the inducibility of both subunits, p35 and p40, and expression of p35 mRNA is the limiting factor for the secretion of the bioactive IL-12 p70 heterodimer. Optimal induction of p35 mRNA requires priming of the monocytes by interferon-γ (IFN-γ), followed by brief exposure to lipopolysaccharide or other bacterial products. To investigate control of p35 gene expression, we isolated genomic clones containing the human p35 gene and determined the 5′ end of the mRNA expressed in monocytes. We discovered that a unique p35 transcript is induced in monocytes that begins downstream of a consensus TATA box that lies within the 5′ end of the cDNA originally cloned from Epstein-Barr virus (EBV)-transformed B cells. Analysis of p35 mRNA by Northern blotting showed that the message from monocytes is approximately 200 bases shorter than message derived from the EBV-transformed B-cell line VDS. The initiation sites downstream from the TATA box were confirmed by RNase protection and 5′ RACE. The data indicate that p35 transcription can initiate from different sites depending on the cell type and that the shorter inducible transcript in monocytes is the one that accumulates after stimulation. Protein translation of these two forms may result in proteins of different sizes with potential implications for the regulation of IL-12 secretion and function.
Interleukin-12 (IL-12) production by human monocytes is stringently regulated through the inducibility of both subunits, p35 and p40, and expression of p35 mRNA is the limiting factor for the secretion of the bioactive IL-12 p70 heterodimer. Optimal induction of p35 mRNA requires priming of the monocytes by interferon-γ (IFN-γ), followed by brief exposure to lipopolysaccharide or other bacterial products. To investigate control of p35 gene expression, we isolated genomic clones containing the human p35 gene and determined the 5′ end of the mRNA expressed in monocytes. We discovered that a unique p35 transcript is induced in monocytes that begins downstream of a consensus TATA box that lies within the 5′ end of the cDNA originally cloned from Epstein-Barr virus (EBV)-transformed B cells. Analysis of p35 mRNA by Northern blotting showed that the message from monocytes is approximately 200 bases shorter than message derived from the EBV-transformed B-cell line VDS. The initiation sites downstream from the TATA box were confirmed by RNase protection and 5′ RACE. The data indicate that p35 transcription can initiate from different sites depending on the cell type and that the shorter inducible transcript in monocytes is the one that accumulates after stimulation. Protein translation of these two forms may result in proteins of different sizes with potential implications for the regulation of IL-12 secretion and function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.