The results of investigations in these laboratories of 2-aryl-4-(piperidin-1-yl)butanamines and 1,3,4-trisubstituted pyrrolidines as human CCR5 antagonists have recently been disclosed. To facilitate further development of these antagonists, we have developed a pharmacophore model based on the structure-activity relationships (SAR) and a human CCR5 receptor docking model using the crystal structure of rhodopsin as a template [Palczewski, K., et al. (2000) Science 289, 739-745]. Guided by the receptor docking model, we have mapped the compounds' site of interaction with CCR5 using site-directed mutagenesis experiments. Our results are consistent with a binding site for the two series that is located within a cavity near the extracellular surface formed by transmembrane helices 2, 3, 6, and 7. This site is overlapping yet distinct from that reported for another antiviral agent which binds to CCR5 [Dragic, T., et al. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 5639-5644].
Stable, potent, highly specific, time-dependent monocyclic beta-lactam inhibitors of human leucocyte elastase (HLE) are described. The heavily substituted beta-lactams are stable under physiological conditions including in the presence of enzymes of the digestive tract. The beta-lactams were unstable in base. At pH 11.3 and 37 degrees C they were hydrolyzed with half-lives of 1.5-2 h. Hydrolysis produced characteristic products including the substituent originally at C-4 of the lactam ring, a substituted urea, and products resulting from decarboxylation of the acid after ring opening. The most potent beta-lactam displayed only 2-fold less activity versus HLE than alpha 1PI, the natural proteinaceous inhibitor. The compounds were more potent against the human and primate PMN elastases than versus either the dog or rat enzymes. Differences in the structure-activity relationships of the human versus the rat enzymes suggest significant differences between these two functionally similar enzymes. The specificity of these compounds toward HLE versus porcine pancreatic elastase (PPE) is consistent with the differences in substrate specificity reported for these enzymes [Zimmerman & Ashe (1977) Biochim. Biophys. Acta 480, 241-245]. These differences suggest that the alkyl substitutions at C-3 of the lactam ring bind in the S1 specificity pocket of these enzymes. The dependence of the stereochemistry at C-4 suggests additional differences between HLE and PPE. Most of the compounds do not inhibit other esterases or human proteases. Weak, time-dependent inhibition of human cathepsin G and alpha-chymotrypsin by one compound suggested a binding mode to these enzymes that places the N-1 substitution in the S1 pocket.
A variety of 7 alpha-methoxycephalosporin ester and amide sulfones were prepared and tested to determine the structure-activity relations for inhibition of human leukocyte elastase (HLE), a serine protease which has been implicated in several degenerative lung and tissue diseases. The most potent IC50 values were obtained with neutral, lipophilic derivatives, with the esters being more active than the amides. However, the best time-dependent inhibition in this series was observed with the p- and m-carboxybenzyl esters 7b and 7c. These results are discussed in terms of the proposed mechanism of inhibition as well as a molecular modeling study using the recently solved X-ray crystal structure of HLE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.