The use of digital technology is essential in increasing the younger generation's interest in the agricultural sector. Deficient awareness of youth in the agricultural sector, even though the agricultural sector has great potential and has a crucial role in handling anything. The methodology carried out in this study uses data collection, initial processing of data, analysis using python, evaluation, and validation of results. Content with agricultural topics, the use of the Internet of things on agriculture that contains the content of the role of the younger generation in the agricultural sector is then used as a dataset. Variables analyzed in these contents include the year of content creation, how many subscribers, number of viewers, number of videos. In-person interviews with the younger generation were also conducted in this study to explore information with variables in knowledge levels, family environment factors, land availability, social practice, risk factors, and income. The results and discussions of the analysis of content related to agriculture and the Internet of things showed the younger generation's interest in farming with the help of digital platforms. Of the 30 respondents who were used as a sample, prestige social has the highest value compared to other variables with 0,59. The results obtained from the analysis showed that the number of impressions on content related to the younger generation in the agricultural sector reached 248,882,953 impressions and the number of impressions related to Internet of Things content as many as 23. 969 impressions. The use of technology with the digital Youtube platform is an excellent opportunity in giving birth to various kinds of innovations by utilizing digital technology to support the sustainability of the agricultural sector in Indonesia.
Learning content can be identified through text, images, and videos. This study aims to predict the learning content contained on YouTube. The images used are images contained in the learning content of the exact sciences, such as mathematics, and social science fields, such as culture. Prediction of images on learning content is done by creating a model on CNN. The collection of datasets carried out on learning content is found on YouTube. The first assessment was performed with an RMSProp optimizer with a learning rate of 0.001, which is used for all optimizers. Several other optimizers were used in this experiment, such as Adam, Nadam, SGD, Adamax, Adadelta, Adagrad, and Ftrl. The CNN model used in the dataset training process tested the image with multiple optimizers and obtained high accuracy results on RMSprop, Adam, and Adamax. There are still many shortcomings in the experiments we conducted in this study, such as not using the momentum component. The momentum component is carried out to improve the speed and quality of neural networks. We can develop a CNN model using the momentum component to obtain good training results and accuracy in later studies. All optimizers contained in Keras and TensorFlow can be used as a comparison. This study concluded that images of learning content on YouTube could be modeled and classified. Further research can add image variables and a momentum component in the testing of CNN models.
Kain Sasirangan merupakan kain khas dari daerah Kalimantan Selatan. Pola atau motif kain sasirangan memiliki pola dasar yang unik sehingga berbeda dengan kain khas lainnya di Indonesia. Pola kain sasirangan terbentuk dari proses juju atau jahitan. Corak kain sasirangan yang memiliki keunikan tersebut dapat disegmentasi menjadi bentuk yang lebih bermakna sehingga mudah untuk dianalisis. Segmentasi citra yang akan diuji adalah pola dasar kain sasirangan dengan sampel acak untuk membandingkan hasil evaluasi evaluasi metrik proses segmentasi citra dari pola kain sasirangan. Segmentasi citra yang dibandingkan merupakan segmentasi yang berbeda dengan karakteristik tertentu, yaitu menggunakan pendekatan metode compact watershed, canny filter, dan metode morfologi geodesik active contours. Dalam evaluasi metrik segmentasi citra menggunakan precision-recall yang berfungsi untuk mengevaluasi kualitas keluaran classifier. Setelah proses segmentasi citra dievaluasi, pola kain sasirangan dikelompokkan menggunakan algoritma K-means sebagai strategi pelabelan yang berbeda. Proses pelabelan ini menggunakan algoritme K-means untuk mencocokkan detail dengan lebih baik tetapi dapat menjadi tidak stabil karena bergantung pada inisialisasi acak. Alternatif untuk menyeimbangkan proses pelabelan yang tidak stabil menggunakan algoritma mean dapat menggunakan diskritisasi. Penambahan metode K-means dengan diskritisasi dapat membuat bidang dengan bentuk geometris yang cukup datar. pola kain sasirangan dikelompokkan menggunakan algoritma K-means sebagai strategi pelabelan yang berbeda. Proses pelabelan ini menggunakan algoritme K-means untuk mencocokkan detail dengan lebih baik tetapi dapat menjadi tidak stabil karena bergantung pada inisialisasi acak. Alternatif untuk menyeimbangkan proses pelabelan yang tidak stabil menggunakan algoritma mean dapat menggunakan diskritisasi. Penambahan metode K-means dengan diskritisasi dapat membuat bidang dengan bentuk geometris yang cukup datar. pola kain sasirangan dikelompokkan menggunakan algoritma K-means sebagai strategi pelabelan yang berbeda. Proses pelabelan ini menggunakan algoritme K-means untuk mencocokkan detail dengan lebih baik tetapi dapat menjadi tidak stabil karena bergantung pada inisialisasi acak. Alternatif untuk menyeimbangkan proses pelabelan yang tidak stabil menggunakan algoritma mean dapat menggunakan diskritisasi. Penambahan metode K-means dengan diskritisasi dapat membuat bidang dengan bentuk geometris yang cukup datar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.