Intensive agricultural practices and poor management of organic waste have adverse effects on aquatic ecosystems, where excessive macroalgal proliferation can occur to form 'green tides', with negative environmental, ecological and socioeconomic impacts. One novel method for converting a problematic material into a valuable resource is to use excess algal biomass as a feedstock for biochar production. With a high elemental composition, such a resource might be suitable to redress soil deficiencies and to ameliorate soil fertility.Green macroalgae from the Ulva genus, in bladed (predominantly U. rigida), tubular (predominantly U. prolifera) and mixed morphological (U. rigida and U. prolifera) phenotypes, were used to produce biochars. A pot trial within a controlled-environment chamber was carried out to determine the effects of amending high-and low-fertilizer compost with algal biochars (applied at 0, 0.5, 1, 2 and 5% w/w) on the growth rate of Arabidopsis thaliana. A commercial woodbased biochar was used under similar treatments as a control. Weekly imaging and final harvest weights provided additional growth data; composition data including ultimate and proximate analyses, pH, Brunauer-Emmett-Teller (BET) surface area and hydropyrolysis of the dried macroalgae and algal biochars were also conducted.Significant enhanced growth in seedlings grown with biochar amendment were not observed in high-or low-fertilizer compost, and the addition of algal biochars at 5% w/w to high-fertilizer soil significantly reduced plant growth. Elemental analysis revealed that the algal biochars contained high quantities of alkaline elements including sodium. It was hypothesised that salinity was the primary factor affecting plant growth at higher biochar application rates, despite the algae being sourced from an estuarine environment. Biochar provenance and composition is highly significant: using the catch-all term 'biochar' ignores both the range of materials and composition that could be used to create it and its subsequent impact within the soil. HIGHLIGHTS• First plant trial using biochar predominantly from Ulva species.• Negative impact seen with 5% algal biochar on plant growth.• High sodium concentrations putatively identified as reduced plant growth cause.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.