The distribution of zinc in the forebrain and midbrain of the lizard Gekko gecko was studied with the recently modified Timm method. Areas with a high intensity of staining are almost exclusively found in the telencephalon, although also some structures in the diencephalon display notable staining. Cortical areas that stain heavily are the deep zone of the subcortical layer of the small-celled medial cortex, the longitudinal association bundle that encompasses the large-celled medial cortex, and the dorsal cortex. Of the subcortical areas, particularly the anterior septal nucleus shows a high intensity of staining. Moderate to dense Timm staining is further observed in the ventral part of the anterior lateral cortex, the lateral septal nucleus, the striatum, the amygdaloid complex, and the dorsal ventricular ridge. Staining in the diencephalon is primarily confined to the stria terminalis and the ventromedial hypothalamic nucleus, whereas in the midbrain weak staining is observed in the ventral tegmental area and the periventricular layers of the tectum and the tegmentum. The presence of zinc in the gekkonid brain is discussed in relation to connections and neurotransmitters as studied in same species. Moreover, similarities in pattern of staining for zinc in mammals and reptiles and possible evolutionary implications are mentioned.
The aim of the present study was to demonstrate the morphology and distribution of the serotonergic neurons in the brainstem of the New Zealand white rabbit by using a highly specific immunocytochemical procedure. It was possible to divide the serotonergic neurons into a rostral group, which is situated in the mesencephalon and the rostral part of the pons containing four serotonergic nuclei, and a caudal group, which is located in the medulla and the caudal part of the pons containing five serotonergic nuclei. The localization of the serotonergic neurons is presented in a detailed brainstem atlas, and the distribution of the serotonergic neurons is in accordance with results obtained by other authors in different species. Special emphasis was given to the fact that many of the serotonergic neurons were distributed in more lateral parts of the brainstem. The laterally orientated neurons, which were large and multipolar, were morphologically different from the serotonergic neurons in the midline, which were mostly small and relatively nonpolar. The serotonergic system of the New Zealand white rabbit has undergone a major lateralization, like the serotonergic system of man and higher primates, and it may therefore be excellently suited for experimental procedures directed towards the serotonergic system. The difference between serotonergic neurons localized in the midline and those situated laterally may reflect functional differences based on dissimilarity in connectivity and morphology, and this possible subspecialization of the serotonergic system is discussed in the context of present knowledge of serotonergic anatomy and function.
This study provides a detailed light microscopic description of the morphology and distribution of immunohistochemically stained serotonergic axons in the hippocampal region of the New Zealand white rabbit. The serotonergic axons were segregated morphologically into three types: beaded fibers, fine fibers, and stem-axons, respectively. Beaded fibers were thin serotonergic axons with large varicosities, whereas thin axons with small fusiform or granular varicosities were called fine fibers. Finally, thick straight non-varicose axons were called stem-axons. Beaded fibers often formed large conglomerates with numerous boutons (pericellular arrays) in close apposition to the cell-rich layers in the hippocampal region, e.g., the granular and hilar cell layers of the dentate area and the pyramidal cell layer ventrally in CA3. The pericellular arrays in these layers were often encountered in relation to small calbindin-D2BK-positive cells, as shown by immunohistochemical double staining for serotonin and calbindin-D28K. The beaded and fine serotonergic fibers displayed a specific innervation pattern in the hippocampal region and were encountered predominantly within the terminal field of the perforant path, e.g., the stratum moleculare hippocampi and the outer two-thirds of the dentate molecular layer. These fibers were also frequently seen in the deep part of the stratum oriens and the alveus, forming a dense plexus in relation to large multipolar calbindin-D28K-positive cells and their basal extensions. Stem-axons were primarily seen in the fimbria and alveus. This innervation pattern was present throughout the entire hippocampal formation, but there were considerable septotemporal differences in the density of the serotonergic innervation. A high density of innervation prevailed in the ventral/temporal part of the hippocampal formation, whereas the dorsal/septal part received only a moderate to weak serotonergic innervation. These results suggest that the serotonergic system could modulate the internal hippocampal circuitry by way of its innervation in the terminal field of the perforant path, the hilus fasciae dentatae, and ventrally in the zone closely apposed to the mossy fiber layer and the pyramidal cells of CA3. This modulation could be of a dual nature, mediated directly by single serotonergic fibers traversing the hippocampal layers or indirectly by the pericellular arrays and their close relation to the calbindin-D28K-positive cells. The marked septotemporal differences in innervation density point toward a difference between the ventral and dorsal parts of the hippocampal formation with respect to serotonergic function and need for serotonergic modulation.
The distribution of zinc was studied in the brain of the zebra finch (Taenopygia guttata) by means of the selenium histochemical method. A specific pattern was seen, which usually correlated with the main known architectonic subdivisions. In addition, a few as yet unidentified structures were observed. In the telencephalon, the pallial components were stained with moderate to strong intensity. The only exceptions were the hyperstriatum intercalatus superior, a small medial area in the hyperstriatum accessorium and in the dorsolateral cortex, and the dorsomedial part of the hippocampal complex, which were virtually devoid of staining. Staining of the dorsal ventricular ridge components varied considerably. The archistriatum, the nucleus accumbens, the nucleus of the stria terminalis, the hyperstriatum ventrale and the lateral septum showed moderate to strong staining. The medial septum was weakly stained. The neostriatum showed a rather complex pattern of staining with unstained areas, such as the magnocellular nucleus of the anterior neostriatum, and other parts intensely stained, especially in its caudal region. Both paleostriatii primitivum and augmentatum showed a rostro-caudal gradient that was increasingly stained. We also observed an intensely stained area ventral to the fasciculus prosencephali lateralis and lateral to the tractus septomesencephalicus, a weakly to moderately stained band ventral to the lobus parolfactorius, an intensely stained zone along the lateral ventricle in the hyperstriatum ventrale, and an unstained almond-shaped nucleus in the lateral hyperstriatum ventrale. In the diencephalon, the hypothalamus showed a moderate to strong, rather uniform staining, whereas the thalamus was usually weakly to moderately stained, with the exception of a few unstained nuclei. Only the lateral nucleus of the habenula was stained, and with strong intensity. Most of the mesencephalon stained rather uniformly with a moderate to strong intensity. The most intense staining was seen in the substantia grisea centralis, the substantia grisea et fibrosa periventricularis, the torus semicircularis and the nucleus intercollicularis. The tectum opticum was virtually devoid of stain except for two light bands in the stratum griseum et fibrosum superficiale. The formatio reticularis was moderately stained. All the other structures were either weakly stained or unstained. Some staining was seen in the Purkinje and the granular layers of the cerebellum, as well as around its internal nuclei. The pons and the medulla oblongata showed an overall moderate to intense staining, with the exception of a few unstained nuclei. When compared in three bird species belonging to different genera, zinc distribution shows remarkable similarities, despite species, age and methodological differences.(ABSTRACT TRUNCATED AT 400 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.