BackgroundRecent evidence suggests that there is a link between metabolic diseases and bacterial populations in the gut. The aim of this study was to assess the differences between the composition of the intestinal microbiota in humans with type 2 diabetes and non-diabetic persons as control.Methods and FindingsThe study included 36 male adults with a broad range of age and body-mass indices (BMIs), among which 18 subjects were diagnosed with diabetes type 2. The fecal bacterial composition was investigated by real-time quantitative PCR (qPCR) and in a subgroup of subjects (N = 20) by tag-encoded amplicon pyrosequencing of the V4 region of the 16S rRNA gene. The proportions of phylum Firmicutes and class Clostridia were significantly reduced in the diabetic group compared to the control group (P = 0.03). Furthermore, the ratios of Bacteroidetes to Firmicutes as well as the ratios of Bacteroides-Prevotella group to C. coccoides-E. rectale group correlated positively and significantly with plasma glucose concentration (P = 0.04) but not with BMIs. Similarly, class Betaproteobacteria was highly enriched in diabetic compared to non-diabetic persons (P = 0.02) and positively correlated with plasma glucose (P = 0.04).ConclusionsThe results of this study indicate that type 2 diabetes in humans is associated with compositional changes in intestinal microbiota. The level of glucose tolerance should be considered when linking microbiota with metabolic diseases such as obesity and developing strategies to control metabolic diseases by modifying the gut microbiota.
Aims/hypothesis Increasing evidence suggests that environ-
ObjectiveDevelopment of obesity and type 2 diabetes (T2D) are associated with gut microbiota (GM) changes. The gut viral community is predominated by bacteriophages (phages), which are viruses that attack bacteria in a host-specific manner. The antagonistic behaviour of phages has the potential to alter the GM. As a proof-of-concept, we demonstrate the efficacy of faecal virome transplantation (FVT) from lean donors for shifting the phenotype of obese mice into closer resemblance of lean mice.DesignThe FVT consisted of viromes with distinct profiles extracted from the caecal content of mice from different vendors that were fed a low-fat (LF) diet for 14 weeks. Male C57BL/6NTac mice were divided into five groups: LF (as diet control), high-fat (HF) diet, HF+ampicillin (Amp), HF+Amp+FVT and HF+FVT. At weeks 6 and 7 of the study, the HF+FVT and HF+Amp+FVT mice were treated with FVT by oral gavage. The Amp groups were treated with Amp 24 hours prior to first FVT treatment.ResultsSix weeks after first FVT, the HF+FVT mice showed a significant decrease in weight gain compared with the HF group. Further, glucose tolerance was comparable between the LF and HF+FVT mice, while the other HF groups all had impaired glucose tolerance. These observations were supported by significant shifts in GM composition, blood plasma metabolome and expression levels of genes associated with obesity and T2D development.ConclusionsTransfer of caecal viral communities from mice with a lean phenotype into mice with an obese phenotype led to reduced weight gain and normalised blood glucose parameters relative to lean mice. We hypothesise that this effect is mediated via FVT-induced GM changes.
Comparative genomics of 11 lactococcal 936-type phages combined with host range analysis allowed subgrouping of these phage genomes, particularly with respect to their encoded receptor binding proteins. The so-called pellicle or cell wall polysaccharide of Lactococcus lactis, which has been implicated as a host receptor of (certain) 936-type phages, is specified by a large gene cluster, which, among different lactococcal strains, contains highly conserved regions as well as regions of diversity. The regions of diversity within this cluster on the genomes of lactococcal strains MG1363, SK11, IL1403, KF147, CV56, and UC509.9 were used for the development of a multiplex PCR system to identify the pellicle genotype of lactococcal strains used in this study. The resulting comparative analysis revealed an apparent correlation between the pellicle genotype of a given host strain and the host range of tested 936-type phages. Such a correlation would allow prediction of the intrinsic 936-type phage sensitivity of a particular lactococcal strain and substantiates the notion that the lactococcal pellicle polysaccharide represents the receptor for (certain) 936-type phages while also partially explaining the molecular reasons behind the observed narrow host range of such phages. Lactococcal phages are classified into 10 groups based on morphology and DNA hybridization studies (1). Of these, three species are most frequently isolated from dairy environments, namely, the 936, c2, and P335 species (1). The 936 phages are strictly lytic and frequently cause problems for the dairy fermentation industry (2). For this reason, members of this phage species have attracted significant attention in recent years, and the genomes of several phages of this species are now available (3-8). The genome organization of these phages is well conserved and consists of three clusters: the early-, middle-, and late-expressed regions. Comparative genomic analysis of these phages has revealed that while most of the structural genes are highly conserved, there are particular regions of diversity within other regions of their genomes. Among these are the early-expressed genes, which are assumed to encode the replication functions of the phage, as well as the late-expressed region, particularly within the genes encoding the receptor binding protein (RBP) and the tail tape measure protein (TMP) (3,4,8). It has been suggested that the genomes of the 936-type phages can be subgrouped based on these variable regions, which appear to correspond to the subspecies grouping (i.e., Lactococcus lactis subsp. lactis or L. lactis subsp. cremoris) of the host(s) which they infect (3, 9). However, there are a number of exceptions to this in terms of phages that are capable of infecting both subspecies of L. lactis. Phages 645 and P475, for example, are capable of infecting certain members of both subspecies and possess a RBP which is different from those of the two major subgroups of the 936 phages (9). Recently, the RBP structures of phages p2 and bIL170 (or domai...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.