Based on velocity data from a long‐term moored observatory located at 0°N, 23°W we present evidence of a vertical asymmetry during the intraseasonal maxima of northward and southward upper‐ocean flow in the equatorial Atlantic Ocean. Periods of northward flow are characterized by a meridional velocity maximum close to the surface, while southward phases show a subsurface velocity maximum at about 40 m. We show that the observed asymmetry is caused by the local winds. Southerly wind stress at the equator drives northward flow near the surface and southward flow below that is superimposed on the Tropical Instability Wave (TIW) velocity field. This wind‐driven overturning cell, known as the Equatorial Roll, shows a distinct seasonal cycle linked to the seasonality of the meridional component of the south‐easterly trade winds. The superposition of vertical shear of the Equatorial Roll and TIWs causes asymmetric mixing during northward and southward TIW phases.
The Arctic is warming much faster than the global average. This is known as Arctic Amplification and is caused by feedbacks in the local climate system. In this study, we explore a previously proposed hypothesis that an associated wind feedback in the Barents Sea could play an important role by increasing the warm water inflow into the Barents Sea. We find that the strong recent decrease in Barents Sea winter sea ice cover causes enhanced ocean‐atmosphere heat flux and a local air temperature increase, thus a reduction in sea level pressure and a local cyclonic wind anomaly with eastward winds in the Barents Sea Opening. By investigating various reanalysis products and performing high‐resolution perturbation experiments with the ocean and sea ice model FESOM2.1, we studied the impact of cyclonic atmospheric circulation changes on the warm Atlantic Water import into the Arctic via the Barents Sea and Fram Strait. We found that the observed wind changes do not significantly affect the warm water transport into the Barents Sea, which rejects the wind‐feedback hypothesis. At the same time, the cyclonic wind anomalies in the Barents Sea increase the amount of Atlantic Water recirculating westwards in Fram Strait by a downslope shift of the West Spitsbergen Current, and thus reduce Atlantic Water reaching the Arctic basin via Fram Strait. The resulting warm‐water anomaly in the Greenland Sea Gyre drives a local anticyclonic circulation anomaly.
<p>The Barents Sea Opening (BSO) is one of two Atlantic gateways connecting the North Atlantic Ocean to the Arctic Ocean. The ocean transport through the BSO is composed of warm and saline Atlantic Water inflow in the central and southern parts of the section and cold Polar and modified Atlantic Water outflow in the north. The variability of strengths of both inflow and outflow largely controls the evolution of the net ocean heat transport into the Barents Sea, locally impacting e.g., ocean-atmosphere heat fluxes, sea ice extent, and deep-water formation. Moreover, changes in heat fluxes and sea ice extent have been shown to impact remote properties such as wintertime weather in northern Europe and water properties in the central Arctic Ocean.</p> <p><br />In this study, we identified and disentangled the contributions of local and remote atmospheric forcing mechanisms of the wintertime volume transport through BSO from 1970-2020. In order to understand the variability and co-variability of the local and remote forcing mechanisms and the linked transport anomalies, we performed dedicated model experiments with the unstructured ocean and sea ice model FESOM2. In addition to a hindcast control simulation using JRA55 reanalysis forcing, we performed two additional model experiments in which we combined JRA55 forcing with CORE1 normal year forcing in a way that the simulations are forced with JRA55 (CORE1) in the Arctic domain and CORE1 (JRA55) outside the Arctic domain. This setup allows the separation of local and upstream forced transport variability. Our experiments show, that both BSO inflow and outflow exhibit strong variability on interannual to decadal timescales. While inflow variability is forced to a similar degree by local alongshore winds and alongshore winds upstream in the Norwegian Sea, the outflow variability is almost entirely forced by wind stress curl anomalies over the northern Barents Sea shelf. Moreover, the inflow anomalies forced upstream are highly correlated with the North Atlantic Oscillation (NAO) while the transport anomalies forced locally exclusively correlate with the NAO during periods of a negative NAO. Furthermore, we observe a drastic drop in the correlation of inflow anomalies forced upstream and the NAO around the year 2000 - the same period in which winters with strongly enhanced outflow anomalies (97/98, 03/04) are found. By expanding our analysis to cyclone activity in the northern North Atlantic, we link the loss of co-variability of NAO and BSO inflow to an anomalous southward deflection of cyclones in these winters, affecting the alongshore winds in the Norwegian Sea as well as the wind stress curl over the northern Barents Sea shelf.</p> <p><br />In general, this study aims to improve our understanding of the drivers of volume and heat transport variability in the BSO as a key factor for (sub-)Arctic, ocean, weather, and climate variability.&#160;<br /><br /></p>
<p>One of the fastest changing environments of the Arctic is the Barents Sea (BS), located north of Norway between Svalbard, Franz Josef Land and Novaya Zemlja. Although covering only about 10% of the Arctic Ocean area, the BS is of Arctic-wide importance, &#160;as the warm water advected from the North Atlantic cause massive heat fluxes in the atmosphere and sea ice melt, ultimately driving major water mass modifications relevant for the Arctic Ocean circulation &#160;downstream.</p><p>We focus on the question whether the observed retreat in sea-ice extent in the BS over the past four decades has enhanced the inflow of warm Atlantic water (AW) into the BS via an ocean-sea-ice-atmosphere feedback contributing to Arctic Amplification, as follows. We start by presenting evidence that the retreating winter sea-ice cover of the Barents Sea has been associated with an increase in ocean-to-atmosphere heat flux that can be observed in a strong rise in near surface air temperature - spatially coinciding with the regions of strong sea-ice retreat. Furthermore, the rising air temperature and the associated convective processes in the atmosphere create a local low sea level pressure (SLP) system over the northern BS that results in additional westerly winds in the vicinity of the Barents Sea Opening (BSO), where the warm and saline AW enters the BS. In case these additional winds enhance the AW inflow into the BS a positive feedback is likely as more heat is available for melting further ice, amplifiying the negative SLP anomaly.</p><p>In a set of ocean sensitivity experiments using the sea-ice and ocean model FESOM2.1, we investigate the impact of sea ice-related SLP anomalies and their associated anomalous atmospheric circulation patterns on volume transport through the BSO. The simulations rely on a horizontal grid resolution of approx. 4.5 km in the Arctic and Nordic Seas allowing precise modeling of the BS hydrography and circulation. The model is initially driven with a repeated normal year forcing (CORE1) to isolate the impact of the wind anomalies from high frequency atmospheric variability. After a spin-up phase, the model is perturbed by anomalous cyclones over the BS derived from long term SLP differences in reanalysis datasets associated with the observed sea-ice retreat. The results point indeed to a slight increase in net volume transport into the BS across the BSO. This increase, however, is not caused by an <em>increase in the inflow</em> of AW, but rather a <em>decrease of the outflow</em> of modified AW recirculating back towards Fram Strait. In terms of the feedback, our results indicate that the BS AW inflow is not sensitive to cyclonic wind anomalies caused by the sea-ice retreat. The additional volume and heat transport in the modified AW range may not be sufficient to provide enough heat to melt further sea-ice and hence likely does not close the proposed feedback mechanism in the BS.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.