On 31 August a new eruption began from the same fissure and is still ongoing at the time of writing. After 4 September the movement associated with the dyke was minor, suggesting an approximate equilibrium between inflow of magma into the dyke and magma flowing out of it feeding the eruption. Minor eruptions may have occurred under Vatnajškull; shallow ice depressions marked by circular crevasses (ice cauldrons) were discovered in the period 27/08-07/09, indicating leakage of magma or magmatic heat to the glacier causing basal melting ( Fig. 1 and 2b). On 5 September, aircraft radar profiling showed that the ice surface in the centre of the B ‡r!arbunga caldera had subsided 16 m relative to the surroundings, resulting in a 0.32±0.08 km 3 subsidence bowl ( can be compared to a 1 day interferogram over the ice surface spanning 27 -28 August (Fig. 1), that has maximum line-of-sight (LOS) increase of 57 cm, indicating 55-70 cm of subsidence, during 24 hours. From 24 August to 6 September 16 M≥5 earthquakes occurred on the caldera boundary.Over 22000 earthquakes were automatically detected 16/08-06/09 2014, 5000 of which have been manually checked. Four thousand of these have been relatively relocated, defining the dyke segments. Ground deformation in areas outside the Vatnajškull ice cap, and on nunataks within the ice cap, is well mapped by a combination of InSAR, continuously recording GPS sites, and campaign GPS measurements. The GPS observations and analysis give the temporal evolution of the three-dimensional displacements used in the modelling (Fig. 1). Interferometric analysis of synthetic aperture radar images from the COSMO-SkyMed, RADARSAT-2 and TerraSAR-X satellites was used to form 11 interferograms showing LOS change spanning different time intervals (Supplementary Fig. 2). The analysis of seismic and geodetic data is described in Methods.Initial modelling of the dyke, with no a priori constraints on position, strike or dip, show the deformation data require the dyke to be approximately vertical and line up with the seismicity (Extended Data item 4). We therefore fixed the dip to be vertical and the lateral position of the dyke to coincide with the earthquake locations.We modelled the dyke as a series of rectangular patches and estimated the opening and slip on each patch ( Fig. 3a; see Supplementary Figures 3-4 for slip and standard deviations of opening). We used a Markov-chain Monte Carlo approach to estimate 7 the multivariate probability distribution for all model parameters (Methods) on each day 16/08-06/09 2014 (Fig. 2d). The results suggest that most of the magma injected into the dyke is shallower than the seismicity, which mostly spans the depth range from 5 to 8 km below sea level (see Fig. 2c and Methods). While magma may extend to depths greater than 9 km near the centre of the ice cap, towards the edge of the ice cap where constraints from InSAR and GPS are much better, significant opening is all shallower than 5 km (Fig. 3a). The total volume intruded into the dyke by 28 August was 0.48-0...
Surges are common in all the major ice caps in Iceland, and historical reports of surge occurrence go back several centuries. Data collection and regular observation over the last several decades have permitted a detailed description of several surges, from which it is possible to generalize on the nature of surging in Icelandic glaciers. Combining the historical records of glacier-front variations and recent field research, we summarize the geographic distribution of surging glaciers, their subglacial topography and geology, the frequency and duration of surges, changes in glacier surface geometry during the surge cycle, and measured velocity changes compared to calculated balance velocities. We note the indicators of surge onset and describe changes in ice, water and sediment fluxes during a surge. Surges accomplish a significant fraction of the total mass transport through the main outlet glaciers of ice caps in Iceland and have important implications for their hydrology. Our analysis of the data suggests that surge-type glaciers in Iceland are characterized by gently sloping surfaces and that they move too slowly to remain in balance given their accumulation rate. Surge frequency is neither regular nor clearly related to glacier size or mass balance. Steeply sloping glaciers, whether hard- or soft-bedded, seem to move sufficiently rapidly to keep in balance with the annual accumulation.
Radio-echo soundings provide an effective tool for mapping the thermal regimes of polythermal glaciers on a regional scale. Radar signals of 320–370 MHz penetrate ice at sub-freezing temperatures but are reflected from the top of layers of ice which are at the melting point and contain water. Radar signals of 5–20 MHz, on the other hand, see through both the cold and the temperate ice down to the glacier bed. Radio-echo soundings at these frequencies have been used to investigate the thermal regimes of four polythermal glaciers in Svalbard: Kongsvegen, Uvérsbreen, Midre Lovénbreen and Austre Brøggerbreen. In the ablation area of Kongsvegen, a cold surface layer (50–160 m thick) was underlain by a warm basal layer which is advected from the temperate accumulation area. The surface ablation of this cold layer may be compensated by freezing at its lower cold-temperate interface. This requires that the free water content in the ice at the freezing interface is about 1 % of the volume. The cold surface layer is thicker beneath medial moraines and where cold-based hanging glaciers enter the main ice stream. On Uvérsbreen the thermal regime was similar to that of Kongsvegen. A temperate hole was found in the otherwise cold surface layer of the ablation area in a surface depression between Kongsvegen and Uvérsbreen where meltwater accumulates during the summer (near the subglacial lake Setevatnet, 250 m a.s.l.). Lovénbreen w as frozen to the bed at the snout and along all the mountain slopes but beneath the central part of the glacier a warm basal layer (up to 50 m thick) was fed by temperate ice from two cirques. On Austre Brøggerbreen, a temperate basal layer was not detected by radio-echo soundings but the basal ice was observed to be at the melting point in two boreholes.
In total, Icelandic ice caps contain ∼3600 km3 of ice, which if melted would raise sea level by ∼1 cm. Here, we present an overview of mass changes of Icelandic ice masses since the end of the 19th century. They have both gained and lost mass during this period. Changes in ice volume have been estimated both through surface mass balance measurements (performed annually since ∼1990) and differencing of digital elevation models derived from various satellite and airborne observations. While the glaciers showed little mass loss as the 20th century began, losses increased rapidly after 1925, peaked in the 1930s and 1940s, and remained significant until the 1960s. After being near‐zero or even positive during the 1980s and early 1990s, glacier mass budgets declined considerably, and have since the mid‐1990s shown an average annual loss of 9.5±1.5 Gt a−1, contributing ∼0.03 mm a−1 to sea level rise. Since 1995 interannual variability in mass loss is high, ranging from 2.7 to 25.3±1.5 Gt a−1, corresponding to surface mass balances of −0.2 to −2.2 ± 0.15 m we a−1. This variability is driven by climate fluctuations and also by transient reduction of albedo due to volcanic eruptions.
[1] The largest glacier outburst flood (jökulhlaup) ever recorded in Iceland occurred in 1996 and came from subglacial lake Grímsvötn in Vatnajökull ice cap. Among other noteworthy features, this flood was characterized by an unprecedentedly high lake level prior to flood initiation, extremely rapid linear rise in lake discharge, delay between the onset of lake drainage and floodwater arrival at the glacier terminus, formation of short-lived supraglacial fountains, and initially unchannelized outbursts of floodwater at the terminus. Observations suggest that the 1996 flood propagation mechanism was fundamentally different than that of previously observed floods from Grímsvötn. We advance a new model whereby floodwater initially propagates in a turbulent subglacial sheet, which feeds a nascent system of conduits. This model is able to explain key observations made of the 1996 jökulhlaup and may shed light on other outburst floods that do not conform to the standard model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.