Significant progress in the characterization of protein corona has been made. However, insights on how the corona affects the aggregation of nanoparticles (NPs) and consequent biological identity are still lacking. Here, we examined how the corona formed from four major serum proteins, immunoglobulin G (IgG), fibrinogen (FBG), apolipoprotein A1 (ApoA1), and human serum albumin (HSA), over a range of concentrations affects the aggregation of gold NPs (AuNPs). We found that at physiological pH of 7.4, all four proteins aggregated the AuNPs at low concentrations but conferred colloidal stability at high concentrations due to the complete "corona coat" around individual AuNPs. Due to their immune-related functions, IgG and FBG aggregated the AuNPs to a greater extent compared to HSA and ApoA1 which were mostly involved in transport of small molecules. We then introduced the AuNP-corona formed from each protein into an acidic solution at pH 6.2 with high ionic concentration for up to 24 h as a model of the tumor microenvironment to examine for changes in their aggregation. We observed that protein corona formation sterically stabilized the AuNP-corona for all four proteins, resulting in a smaller increase in aggregation and size compared to citratecapped AuNPs. This was especially true for corona formed at high protein:AuNP ratios. Our study therefore showed that the formation of a complete "corona coat" around NPs at sufficiently high protein:NP ratio was required for colloidal stability of designed NP systems in both physiological and cancer microenvironment to maintain efficiency and efficacy in cancer drug delivery.
The protein corona has emerged as an important determinant of biological response in nanoparticle (NP) drug delivery. However, there is presently no reported study on how the protein corona affects the behavior of NPs in microflow and its subsequent interactions with the vascular endothelium, which could affect their delivery to the target tumor site regardless of its targeting mechanism. Furthermore, a consensus on the role of physical and surface characteristics of NPs in affecting the margination of NPs is lacking due to different methods of quantifying margination. In this study, we examine how the particle adhesion (PA) method and particle distribution (PD) method quantify the margination of 20, 40, 100, and 200 nm polystyrene NPs (pNPs) differently in fibronectin or pluronic F-127-coated microfluidic straight channels. We found that PA reduced with increasing pNP size, whereas the PD was similar across all pNP sizes regardless of channel coating. We then formed a protein corona on all pNPs (pNPs-PC) and found that the protein corona increased the adhesion of 40-200 nm pNPs in fibronectin-coated channels, with no size dependence between them except for 40 nm, which had significantly higher particle adhesion. The PA method was also dependent on channel coating, whereas the PD method was independent of channel coating. These results suggested that the PA method was more amenable to surface interactions between the pNPs and the channel wall while providing a measure of the amount of NPs that interacted with the channel walls, whereas the PD method provided a representation of their distribution across the channel due to margination. The two methods complement each other to elucidate a more holistic understanding of how different factors might affect a NP's margination in future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.