While peripheral immune access to the central nervous system (CNS) is restricted and tightly controlled, the CNS is capable of dynamic immune and inflammatory responses to a variety of insults. Infections, trauma, stroke, toxins and other stimuli are capable of producing an immediate and short lived activation of the innate immune system within the CNS. This acute neuroinflammatory response includes activation of the resident immune cells (microglia) resulting in a phagocytic phenotype and the release of inflammatory mediators such as cytokines and chemokines. While an acute insult may trigger oxidative and nitrosative stress, it is typically short-lived and unlikely to be detrimental to long-term neuronal survival. In contrast, chronic neuroinflammation is a long-standing and often self-perpetuating neuroinflammatory response that persists long after an initial injury or insult. Chronic neuroinflammation includes not only long-standing activation of microglia and subsequent sustained release of inflammatory mediators, but also the resulting increased oxidative and nitrosative stress. The sustained release of inflammatory mediators works to perpetuate the inflammatory cycle, activating additional microglia, promoting their proliferation, and resulting in further release of inflammatory factors. Neurodegenerative CNS disorders, including multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), tauopathies, and age-related macular degeneration (ARMD), are associated with chronic neuroinflammation and elevated levels of several cytokines. Here we review the hallmarks of acute and chronic inflammatory responses in the CNS, the reasons why microglial activation represents a convergence point for diverse stimuli that may promote or compromise neuronal survival, and the epidemiologic, pharmacologic and genetic evidence implicating neuroinflammation in the pathophysiology of several neurodegenerative diseases.
Microglial activation and overproduction of inflammatory mediators in the central nervous system (CNS) have been implicated in Alzheimer's disease (AD). Elevated levels of the pro-inflammatory cytokine Tumor Necrosis Factor (TNF) have been reported in serum and post-mortem brains of patients with AD, but its role in progression of AD is unclear. Using novel engineered dominant negative TNF inhibitors (DN-TNFs) selective for soluble TNF (solTNF), we investigated whether blocking TNF signaling with chronic infusion of the recombinant DN-TNF XENP345 or a single injection of a lentivirus encoding DN-TNF prevented the acceleration of AD-like pathology induced by chronic systemic inflammation in 3xTgAD mice. We found that chronic inhibition of solTNF signaling with either approach decreased the LPS-induced accumulation of 6E10-immunoreactive protein in hippocampus, cortex, and amygdala. Immunohistological and biochemical approaches using a C-terminal APP antibody indicated that a major fraction of the accumulated protein was likely to be C-terminal APP fragments (β-CTF) while a minor fraction consisted of Aβ 40 and 42. Genetic inactivation of TNFR1-mediated TNF signaling in 3xTgAD mice yielded similar results. Taken together, our studies indicate that soluble TNF is a critical mediator of the effects of neuroinflammation on early (pre-plaque) pathology in 3xTgAD mice. Targeted inhibition of solTNF in the CNS may slow the appearance of amyloid-associated pathology, cognitive deficits, and potentially the progressive loss of neurons in AD.
Macroautophagy, commonly referred to as autophagy, is a protein degradation pathway that occurs constitutively in cells, but can also be induced by stressors such as nutrient starvation or protein aggregation. Autophagy has been implicated in multiple disease mechanisms including neurodegeneration and cancer, with both tumor suppressive and oncogenic roles. Uncoordinated 51-like kinase 1 (ULK1) is a critical autophagy protein near the apex of the hierarchal regulatory pathway that receives signals from the master nutrient sensors MTOR and AMP-activated protein kinase (AMPK). In mammals, ULK1 has a close homolog, ULK2, although their functional distinctions have been unclear. Here, we show that ULK1 and ULK2 both function to support autophagy activation following nutrient starvation. Increased autophagy following amino acid or glucose starvation was disrupted only upon combined loss of ULK1 and ULK2 in mouse embryonic fibroblasts. Generation of PtdIns3P and recruitment of WIPI2 or ZFYVE1/DFCP1 to the phagophore following amino acid starvation was blocked by combined Ulk1/2 double knockout. Autophagy activation following glucose starvation did not involve recruitment of either WIPI1 or WIPI2 to forming autophagosomes. Consistent with a PtdIns3P-independent mechanism, glucose-dependent autophagy was resistant to wortmannin. Our findings support functional redundancy between ULK1 and ULK2 for nutrient-dependent activation of autophagy and furthermore highlight the differential pathways that respond to amino acid and glucose deprivation.
Microglia are the brain-resident macrophages responsible for immune surveillance that become activated in response to injury, infection, environmental toxins, and other stimuli that threaten neuronal survival. Previous work from our group demonstrated that mice deficient in Regulator of G-protein Signaling 10 (RGS10), a microglia-enriched GTPase activating protein (GAP) for G-protein alpha subunits, displayed increased microglial burden in the CNS at birth and developed a parkinsonian phenotype after exposure to chronic systemic inflammation, implicating a neuroprotective role for RGS10 in the nigrostriatal pathway. While it is known that RGS10 is expressed in both microglia and certain subsets of neurons, it is not known whether RGS10 functions similarly in both cells types. In this study we sought to delineate the specific role of RGS10 in microglia and identify the molecular pathway(s) required for RGS10 to exert its actions in microglia. Here, we identify RGS10 as a negative regulator of the NF-κB pathway in microglia and demonstrate that the pro-inflammatory and cytotoxic phenotype of Rgs10-null microglia can be reversed by lentiviral-mediated restoration of RGS10 expression. In vivo gene transfer of RGS10 into the substantia nigra pars compacta (SNpc) of rats reduced microgliosis and protected against 6-OHDA neurotoxin-induced death of dopaminergic (DA) neurons. Together, our findings suggest that modulation of RGS10 activity in microglia may afford therapeutic benefit in the treatment of chronic neuroinflammatory conditions as well as neuroprotection against inflammation-related degeneration in Parkinson’s disease (PD), the second most common neurodegenerative disorder affecting individuals over age 65.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.