Gap junctions are intercellular channels that allow the passage of ions and small molecules between cells. In the nervous system, gap junctions mediate electrical coupling between neurons. Despite sharing a common topology and similar physiology, two unrelated gap junction protein families exist in the animal kingdom. Vertebrate gap junctions are formed by members of the connexin family, whereas invertebrate gap junctions are composed of innexin proteins. Here we report the cloning of two innexins from the leech Hirudo medicinalis. These innexins show a differential expression in the leech CNS: Hm-inx1 is expressed by every neuron in the CNS but not in glia, whereas Hm-inx2 is expressed in glia but not neurons. Heterologous expression in the paired Xenopus oocyte system demonstrated that both innexins are able to form functional homotypic gap junctions. Hm-inx1 forms channels that are not strongly gated. In contrast, Hm-inx2 forms channels that are highly voltage-dependent; these channels demonstrate properties resembling those of a double rectifier. In addition, Hm-inx1 and Hm-inx2 are able to cooperate to form heterotypic gap junctions in Xenopus oocytes. The behavior of these channels is primarily that predicted from the properties of the constituent hemichannels but also demonstrates evidence of an interaction between the two. This work represents the first demonstration of a functional gap junction protein from a Lophotrochozoan animal and supports the hypothesis that connexin-based communication is restricted to the deuterostome clade.
Tissue transglutaminase 2 (TG2) is modulated by protein kinase A (PKA) mediated phosphorylation: however, the precise mechanism(s) of its modulation by G-protein coupled receptors coupled to PKA activation are not fully understood. In the current study we investigated the potential regulation of TG2 activity by the β-adrenoceptor in rat H9c2 cardiomyoblasts. Transglutaminase transamidation activity was assessed using amine-incorporating and protein cross-linking assays. TG2 phosphorylation was determined via immunoprecipitation and Western blotting. The long acting β-adrenoceptor agonist formoterol induced time- and concentration-dependent increases in TG2 transamidation. Increases in TG2 activity were reduced by the TG2 inhibitors Z-DON (Benzyloxycarbonyl-(6-Diazo-5-oxonorleucinyl)-L-valinyl-L-prolinyl-L-leucinmethylester) and R283 ((1,3,dimethyl-2[2-oxo-propyl]thio)imidazole chloride). Responses to formoterol were blocked by pharmacological inhibition of PKA, extracellular signal-regulated kinase 1 and 2 (ERK1/2), or phosphatidylinositol 3-kinase (PI-3K) signalling. Furthermore, the removal of extracellular Ca also attenuated formoterol-induced TG2 activation. Fluorescence microscopy demonstrated TG2-induced biotin-X-cadaverine incorporation into proteins. Formoterol increased the levels of TG2-associated phosphoserine and phosphothreonine, which were blocked by inhibition of PKA, ERK1/2 or PI-3K signalling. Subsequent proteomic analysis identified known (e.g. lactate dehydrogenase A chain) and novel (e.g. Protein S100-A6) protein substrates for TG2. Taken together, the data obtained suggest that β-adrenoceptor-induced modulation of TG2 represents a novel paradigm in β-adrenoceptor cell signalling, expanding the repertoire of cellular functions responsive to catecholamine stimulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.