Liddle's syndrome is an inherited form of hypertension caused by mutations that truncate the C-terminus of human epithelial Na+ channel (hENaC) subunits. Expression of truncated beta and gamma hENaC subunits increased Na+ current. However, truncation did not alter single-channel conductance or open state probability, suggesting there were more channels in the plasma membrane. Moreover, truncation of the C-terminus of the beta subunit increased apical cell-surface expression of hENaC in a renal epithelium. We identified a conserved motif in the C-terminus of all three subunits that, when mutated, reproduced the effect of Liddle's truncations. Further, both truncation of the C-terminus and mutation of the conserved C-terminal motif increased surface expression of chimeric proteins containing the C-terminus of beta hENaC. Thus, by deleting a conserved motif, Liddle's mutations increase the number of Na+ channels in the apical membrane, which increases renal Na+ absorption and creates a predisposition to hypertension.
The epithelial Na ؉ channel (ENaC) is composed of three homologous subunits: ␣,  and ␥. We used gene targeting to disrupt the  subunit gene of ENaC in mice. The ENaC-deficient mice showed normal prenatal development but died within 2 days after birth, most likely of hyperkalemia. In the ؊͞؊ mice, we found an increased urine Na ؉ concentration despite hyponatremia and a decreased urine K ؉ concentration despite hyperkalemia. Moreover, serum aldosterone levels were increased. In contrast to ␣ENaC-deficient mice, which die because of defective lung liquid clearance, neonatal ENaC deficient mice did not die of respiratory failure and showed only a small increase in wet lung weight that had little, if any, adverse physiologic consequence. The results indicate that, in vivo, the  subunit is required for ENaC function in the renal collecting duct, but, in contrast to the ␣ subunit, the  subunit is not required for the transition from a liquid-filled to an air-filled lung. The phenotype of the ENaC-deficient mice is similar to that of humans with pseudohypoaldosteronism type 1 and may provide a useful model to study the pathogenesis and treatment of this disorder.
NF-κB is a master regulator of inflammation and has been implicated in the pathogenesis of immune disorders and cancer. Its regulation involves a variety of steps, including the controlled degradation of inhibitory IκB proteins. In addition, the inactivation of DNA-bound NF-κB is essential for its regulation. This step requires a factor known as copper metabolism Murr1 domain-containing 1 (COMMD1), the prototype member of a conserved gene family. While COMMD proteins have been linked to the ubiquitination pathway, little else is known about other family members. Here we demonstrate that all COMMD proteins bind to CCDC22, a factor recently implicated in X-linked intellectual disability (XLID). We showed that an XLID-associated CCDC22 mutation decreased CCDC22 protein expression and impaired its binding to COMMD proteins. Moreover, some affected individuals displayed ectodermal dysplasia, a congenital condition that can result from developmental NF-κB blockade. Indeed, patient-derived cells demonstrated impaired NF-κB activation due to decreased IκB ubiquitination and degradation. In addition, we found that COMMD8 acted in conjunction with CCDC22 to direct the degradation of IκB proteins. Taken together, our results indicate that CCDC22 participates in NF-κB activation and that its deficiency leads to decreased IκB turnover in humans, highlighting an important regulatory component of this pathway.
Amiloride-sensitive Na+ channels are an important component of the Na+ reabsorption pathway in a number of epithelia. Here we report the cloning and characterization of cDNAs encoding two subunits of the human kidney epithelial Na+ channel (beta- and gamma-hENaC). Their predicted amino acid sequences were highly homologous (83-85% identical) to the corresponding subunits reported from rat colon (beta- and gamma-rENaC). Both beta- and gamma-hENaC mapped to human chromosome 16. Northern blot analysis showed high expression of beta- and gamma-hENaC in kidney and lung and differential expression of the three subunits in other tissues. Coexpression of beta- and gamma-hENaC with alpha-hENaC in Xenopus oocytes produced Na+ channels with high selectivity for Na+ and high sensitivity to amiloride. In addition, human subunits were able to substitute for the corresponding rat subunits in forming functional Na+ channels, suggesting conservation of function and suggesting that differences in sequence do not disrupt interactions between subunits. These results suggest that human alpha-, beta-, and gamma-ENaC together form Na+ channels with properties that are similar to those observed in epithelia, and will allow further investigation into the role that these channels may play in human disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.