Resistance against the aphid Macrosiphum euphorbiae previously was observed in tomato and attributed to a novel gene, designated Meu-1, tightly linked to the nematode resistance gene, Mi. Recent cloning of Mi allowed us to determine whether Meu-1 and Mi are the same gene. We show that Mi is expressed in leaves, that aphid resistance is isolate-specific, and that susceptible tomato transformed with Mi is resistant to the same aphid isolates as the original resistant lines. We conclude that Mi and Meu-1 are the same gene and that Mi mediates resistance against both aphids and nematodes, organisms belonging to different phyla. Mi is the first example of a plant resistance gene active against two such distantly related organisms. Furthermore, it is the first isolate-specific insect resistance gene to be cloned and belongs to the nucleotide-binding, leucine-rich repeat family of resistance genes.
The relationship between phloem-feeding insects (PFIs) and plants offers an intriguing example of a highly specialized biotic interaction. These insects have evolved to survive on a nutritionally imbalanced diet of phloem sap, and to minimize wound responses in their host plants. As a consequence, plant perception of and responses to PFIs differ from plant interactions with other insect-feeding guilds. Transcriptome-wide analyses of gene expression are currently being applied to characterize plant responses to PFIs in crop plants with race-specific innate resistance, as well as in compatible interactions with susceptible hosts. Recent studies indicate that PFIs induce transcriptional reprogramming in their host plants, and that plant responses to PFIs appear to be quantitatively and qualitatively different from responses to other insects or pathogens. Transcript profiling studies also suggest that PFIs induce cell wall modifications, reduce photosynthetic activity, manipulate source-sink relations, and modify secondary metabolism in their hosts, and many of these responses appear to occur within the phloem tissue. Plant responses to these insects appear to be regulated in part by the salicylate, jasmonate, and ethylene signalling pathways. As additional transcript profiling data become available, forward and reverse genetic approaches will be necessary to determine which changes in gene expression influence resistance or susceptibility to PFIs.
Calcium oxalate is the most abundant insoluble mineral found in plants and its crystals have been reported in more than 200 plant families. In the barrel medic Medicago truncatula Gaertn., these crystals accumulate predominantly in a sheath surrounding secondary veins of leaves. Mutants of M. truncatula with decreased levels of calcium oxalate crystals were used to assess the defensive role of this mineral against insects. Caterpillar larvae of the beet armyworm Spodoptera exigua Hü bner show a clear feeding preference for tissue from calcium oxalate-defective (cod) mutant lines cod5 and cod6 in choice test comparisons with wild-type M. truncatula. Compared to their performance on mutant lines, larvae feeding on wild-type plants with abundant calcium oxalate crystals suffer significantly reduced growth and increased mortality. Induction of woundresponsive genes appears to be normal in cod5 and cod6, indicating that these lines are not deficient in induced insect defenses. Electron micrographs of insect mouthparts indicate that the prismatic crystals in M. truncatula leaves act as physical abrasives during feeding. Food utilization measurements show that, after consumption, calcium oxalate also interferes with the conversion of plant material into insect biomass during digestion. In contrast to their detrimental effects on a chewing insect, calcium oxalate crystals do not negatively affect the performance of the pea aphid Acyrthosiphon pisum Harris, a sap-feeding insect with piercing-sucking mouthparts. The results confirm a long-held hypothesis for the defensive function of these crystals and point to the potential value of genes controlling crystal formation and localization in crop plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.