Replacing toxic isocyanates and petro-based reactants currently employed for polyurethanes (PUs) synthesis is nowadays a major concern. Among all the possible routes to isocyanate-free PUs, aminolysis of cyclic carbonates, leading to polyhydroxyurethanes (PHUs) seems to be one of the most promising pathways. Herein, we discuss the added value brought by the reactive extrusion process on PHU synthesis. In order to evaluate the benefit and the versatility of the process, three different bis-cyclic carbonates exhibiting different reactivity (Diglycerol Dicarbonate, Seb-bCC-ester and one bisCC containing amide function, Und-6DA-bisCC), were tested in the course of polymerization with different diamines. The PHUs synthesized through reactive extrusion were then compared with the ones obtained through classical bulk polymerizations in terms of kinetics, PHU molar masses and side reactions, clearly demonstrating the benefit of the extrusion process.
Epoxy vitrimers encompass many advantages compared to traditional epoxy materials such as recyclability, repairability, and reprocessability. These properties are induced by the incorporation of dynamic reversible covalent bonds. Recently, the incorporation of aromatic disulfide bridges that are dynamic has expanded the development of new eco-friendly epoxy materials. Herein, we studied a bio-based aliphatic disulfide based on cystamine as a hardener with a vanillin-derived biosourced epoxy to prepare fully bio-based epoxy vitrimers. This article provides a comparative study between cystamine and an aromatic disulfide benchmark hardener issued from petrol resources. This work demonstrated that the presence of this aliphatic hardener has a significant influence not only on the reactivity, but most importantly on the resulting dynamic properties. An interesting yet counterintuitive accelerating effect of the dynamic exchanges was clearly demonstrated with only 2 to 20% of molar fraction of cystamine added to the aromatic disulfide formulation. A similar glass transition was obtained compared to the purely aromatic analogue, but relaxation times were decreased by an order of magnitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.