Aqueous zinc batteries (AZBs) have recently garnered considerable interest due to their potential cost benefit and safety. Use of an abundant and high-capacity zinc metal anode and inexpensive and safe aqueous electrolytes make them suitable for large-scale energy storage applications. However, the sluggish solid-state diffusion of divalent zinc puts stringent requirements on the choice of inorganic host structures. Organic solids, which are presumably sustainable, offer unique versatility, as they possess a soft lattice for facile ionic diffusion and diverse redox functions. Here, we tap into that prospect with a novel organic cathode, namely, 1,4 bis(diphenylamino)benzene (BDB), which delivers nearly a 2-electron redox capacity of 125 mA h g −1 , at an average voltage of 1.25 V in an AZB. The two tertiary nitrogens reversibly oxidize/reduce in two steps, with accompanying anion insertion/release from/into a highly concentrated aqueous electrolyte possessing a high oxidative stability. Reversible plating/stripping of zinc on the anode side complements the anion (de)insertion on the cathode side, yielding a rechargeable dual-ion system. Paired with a cellulose nanocrystal membrane to suppress the active material diffusion into the electrolyte, the BDB cathode delivers 112 mA h g −1 of capacity with 82% retention after 500 cycles at a 3C rate (1C = 130 mA g −1 ), and 1000 cycles with 75% capacity retention at a 6C rate, at nearly 100% Coulombic efficiency. Reversible electrochemistry is accompanied by two reversible biphasic transformations and reversible chemical evolution between BDB, BDB + , and BDB 2+ species, as made evident by operando X-ray diffraction and solid-state operando ultraviolet−visible spectroscopy studies. These results highlight a new avenue and understanding of organic cathode hosts development for AZBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.