Background/Aims: Dent’s disease is caused by mutations in the chloride/proton antiporter, CLC-5, or oculo-cerebro-renal-syndrome-of-Lowe (OCRL1) genes. Methods: Eighteen probands with Dent’s disease were investigated for mutations in CLC-5 and two of its interacting proteins, CLC-4 and cofilin. Wild-type and mutant CLC-5s were assessed in kidney cells. Urinary calcium excretion following an oral calcium challenge was studied in one family. Results: Seven different CLC-5 mutations consisting of two nonsense mutations (Arg347Stop and Arg718Stop), two missense mutations (Ser244Leu and Arg516Trp), one intron 3 donor splice site mutation, one deletion-insertion (nt930delTCinsA) and an in-frame deletion (523delVal) were identified in 8 patients. In the remaining 10 patients, DNA sequence abnormalities were not detected in the coding regions of CLC-4 or cofilin, and were independently excluded for OCRL1. Patients with CLC-5 mutations were phenotypically similar to those without. The donor splice site CLC-5 mutation resulted in exon 3 skipping. Electrophysiology demonstrated that the 523delVal CLC-5 mutation abolished CLC-5-mediated chloride conductance. Sixty percent of women with the CLC-5 deletion-insertion had nephrolithiasis, although calcium excretion before and after oral calcium challenge was similar to that in unaffected females. Conclusions: Three novel CLC-5 mutations were identified, and mutations in OCRL1, CLC-4 and cofilin excluded in causing Dent’s disease in this patient cohort.
Renal tubular reabsorption is important for extracellular fluid homeostasis and much of this occurs via the receptor-mediated endocytic pathway. This pathway is disrupted in Dent’s disease, an X-linked renal tubular disorder that is characterized by low-molecular-weight proteinuria, hypercalciuria, nephrolithiasis, and renal failure. Dent's disease is due to mutations of CLC-5, a chloride/proton antiporter, expressed in endosomes and apical membranes of renal tubules. Loss of CLC-5 function alters receptor-mediated endocytosis and trafficking of megalin and cubilin, although the underlying mechanisms remain to be elucidated. Here, we report that CLC-5 interacts with kinesin family member 3B (KIF3B), a heterotrimeric motor protein that facilitates fast anterograde translocation of membranous organelles. Using yeast two-hybrid, glutathione-S-transferase pull-down and coimmunoprecipitation assays, the COOH terminus of CLC-5 and the coiled-coil and globular domains of KIF3B were shown to interact. This was confirmed in vivo by endogenous coimmunoprecipitation of CLC-5 and KIF3B and codistribution with endosomal markers in mouse kidney fractions. Confocal live cell imaging in kidney cells further demonstrated association of CLC-5 and KIF3B, and transport of CLC-5-containing vesicles along KIF3B microtubules. KIF3B overexpression and underexpression, using siRNA, had reciprocal effects on whole cell chloride current amplitudes, CLC-5 cell surface expression, and endocytosis of albumin and transferrin. Clcn5Y/− mouse kidneys and isolated proximal tubular polarized cells showed increased KIF3B expression, whose effects on albumin endocytosis were dependent on CLC-5 expression. Thus, the CLC-5 and KIF3B interaction is important for CLC-5 plasma membrane expression and for facilitating endocytosis and microtubular transport in the kidney.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.