The Josemaría porphyry copper-gold deposit is located in the Frontal Cordillera of San Juan Province, Argentina, near the present-day northern limit of the Chilean-Pampean flat-slab segment of the central Andes, and midway between the Maricunga and El Indio metallogenic belts. The deposit is centered on small, multiphase dacite porphyry intrusions that were emplaced at the contact between rhyolitic volcanic and tonalitic plutonic rocks of Late Permian to Triassic age. The earlier, more intensely quartz ± magnetite-veined porphyry phases and contiguous wall rocks display a telescoped sequence of alteration-mineralization zones, from shallow advanced argillic (mainly quartz-pyrophyllite) and underlying sericitic to deeper chlorite-sericite and minor remnant potassic. All the alteration types are mineralized, but the highest copper and gold grades are present as a low-arsenic, high-sulfidation assemblage in the quartz-pyrophyllite and sericitic zones. The outermost parts of the copper-gold zone are overlapped by a pronounced molybdenum-bearing annulus.New U-Pb zircon ages show that the deposit was formed at ~25 to 24.5 Ma, partially unroofed during continued NNE-striking, high-angle reverse faulting, and then unconformably overlain by red-bed conglomerate and sandstone capped by andesitic and dacitic tuff and lava. The andesite reported an age of ~22.35 Ma. A second, discrete pulse of currently undated, advanced argillic alteration, accompanied by minor high-sulfidation enargite mineralization, locally affected the southern periphery of the deposit, including its postmineral cover. Following erosional removal of the volcano-sedimentary strata from the northern and central parts of the deposit, the NNE-trending fault zone underwent minor normal displacement and localized economically significant supergene chalcocite enrichment. However, probably because of the rapidity of deposit unroofing, supergene processes were barely able to keep pace with erosion, resulting in a thin supergene profile over much of the exposed deposit. The southern part of the deposit remains beneath the postmineral cover and, hence, escaped the enrichment.Josemaría is unusual among the many central Andean porphyry copper deposits formed during rapid uplift because it preserves evidence for not only alteration-mineralization telescoping but also exceptionally rapid postmineral exhumation and subsequent burial beneath thick volcano-sedimentary cover. Unroofing of porphyry copper deposits in 1 to 2 m.y. is more typical of the high erosion rates that characterize pluvial tropical climates than the semiarid conditions that prevailed during and since the formation of Josemaría. Shell postdoctoral research fellow, he has operated for over 45 years as an independent consultant to more than 300 mining companies, international agencies, and foreign governments. He has worked on a wide variety of precious-, base-, and lithophile-metal deposits and prospects in 100 countries worldwide, but focuses primarily on the epithermal gold and porphyry copper enviro...
The Llewellyn-Tally Ho deformation zone in northwest British Columbia and southern Yukon demarcates the eastern limit of the Nisling terrane and the western limit of the Stikine terrane and has spatially related epithermal, mesothermal, and intrusion-related gold deposits and occurrences. The Llewellyn fault is a southeast-striking, steeply dipping brittle dextral strike-slip structure that overprints 'early' penetrative fabrics and ductile deformation. The Tally Ho shear zone, in the Yukon, represents an early ductile deformation zone, comprising one penetrative foliation (Smain) and mylonite zones that are overprinted by late brittle faulting, analogous to the Llewellyn fault. Previous work and this study demonstrate that brittle strike-slip deformation along the Llewellyn fault occurred between ca. 56 and 50 Ma. Two granodiorite intrusions (ca. 75 Ma) crosscut the early ductile deformation fabrics. In the Tally Ho shear zone, Smain crosscuts a granodiorite pluton and porphyry dyke, which have yielded preliminary U-Pb zircon dates of ca. 98 and 95 Ma, respectively. As such, we infer that the early ductile fabrics formed before ca. 75 Ma and after ca. 95 Ma. This study further demonstrates that the early ductile and late brittle deformation are separated by at least ca. 20 Ma, indicating the various styles of gold mineralization developed during temporally distinct tectonic events: an 'early' late Cretaceous ductile event typical of the Tintina gold belt; and a 'later' Eocene brittle event matching the timing and structural framework of the Juneau gold camp.
Yukon–Tanana terrane in the southern Campbell Range is composed of rocks that have different metamorphic, exhumation, and structural histories, and that have formed in disparate parts of the Paleozoic Yukon–Tanana volcanic arc. The geological relationships in the southern Campbell Range reveal the tectonic and structural history of the Klatsa metamorphic complex, which represents the remnants of an Early Mississippian subduction zone beneath the Yukon–Tanana arc. The Klatsa metamorphic complex is composed of foliated to massive serpentinite, leucogabbro, amphibolite, and retrogressed eclogitic quartz–muscovite schist with lenses of metabasite. It was structurally juxtaposed on Upper Mississippian to Lower Permian metasedimentary rocks of the White Lake, King Arctic, and Money Creek formations. Regional and local structural and stratigraphic relationships suggest that the Klatsa metamorphic complex is part of the Cleaver Lake thrust sheet, the structurally highest thrust sheet in a north- to northeast-vergent thrust belt that deformed the Yukon–Tanana terrane during the Early Permian. Restoration of the displacement on the Cleaver Lake and underlying thrust faults places the Klatsa metamorphic complex on the western margin of Yukon–Tanana terrane. Late Devonian to Early Mississippian subduction is thought to have occurred along this margin based on previous paleogeographic reconstructions. Generally north- to northeast-vergent D1 to D3 folds deformed the Klatsa metamorphic complex and adjacent metasedimentary rocks. Jurassic(?) D4 imbricate thrust faulting has, in part, reactivated the Cleaver Lake thrust fault contacts and imbricated the Klatsa metamorphic complex with metasedimentary rocks in fault panels that are repeated at a scale of 10 to hundreds of metres.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.