Background Aim of the present study is to describe characteristics of COVID-19-related deaths and to compare the clinical phenotype and course of COVID-19-related deaths occurring in adults (<65 years) and older adults (≥65 years). Method Medical charts of 3,032 patients dying with COVID-19 in Italy (368 aged < 65 years and 2,664 aged ≥65 years) were revised to extract information on demographics, preexisting comorbidities, and in-hospital complications leading to death. Results Older adults (≥65 years) presented with a higher number of comorbidities compared to those aged <65 years (3.3 ± 1.9 vs 2.5 ± 1.8, p < .001). Prevalence of ischemic heart disease, atrial fibrillation, heart failure, stroke, hypertension, dementia, COPD, and chronic renal failure was higher in older patients (≥65 years), while obesity, chronic liver disease, and HIV infection were more common in younger adults (<65 years); 10.9% of younger patients (<65 years) had no comorbidities, compared to 3.2% of older patients (≥65 years). The younger adults had a higher rate of non-respiratory complications than older patients, including acute renal failure (30.0% vs 20.6%), acute cardiac injury (13.5% vs 10.3%), and superinfections (30.9% vs 9.8%). Conclusions Individuals dying with COVID-19 present with high levels of comorbidities, irrespective of age group, but a small proportion of deaths occur in healthy adults with no preexisting conditions. Non-respiratory complications are common, suggesting that the treatment of respiratory conditions needs to be combined with strategies to prevent and mitigate the effects of non-respiratory complications.
RhoGTPases are crucial molecules in neuronal plasticity and cognition, as confirmed by their role in non-syndromic mental retardation. Activation of brain RhoGTPases by the bacterial cytotoxic necrotizing factor 1 (CNF1) reshapes the actin cytoskeleton and enhances neurotransmission and synaptic plasticity in mouse brains. We evaluated the effects of a single CNF1 intracerebroventricular inoculation in a mouse model of Rett syndrome (RTT), a rare neurodevelopmental disorder and a genetic cause of mental retardation, for which no effective therapy is available. Fully symptomatic MeCP2-308 male mice were evaluated in a battery of tests specifically tailored to detect RTT-related impairments. At the end of behavioral testing, brain sections were immunohistochemically characterized. Magnetic resonance imaging and spectroscopy (MRS) were also applied to assess morphological and metabolic brain changes. The CNF1 administration markedly improved the behavioral phenotype of MeCP2-308 mice. CNF1 also dramatically reversed the evident signs of atrophy in astrocytes of mutant mice and restored wt-like levels of this cell population. A partial rescue of the overexpression of IL-6 cytokine was also observed in RTT brains. CNF1-induced brain metabolic changes detected by MRS analysis involved markers of glial integrity and bioenergetics, and point to improved mitochondria functionality in CNF1-treated mice. These results clearly indicate that modulation of brain RhoGTPases by CNF1 may constitute a totally innovative therapeutic approach for RTT and, possibly, for other disorders associated with mental retardation.
It is widely believed that the inflammatory events mediated by microglial activation contribute to several neurodegenerative processes. Alzheimer's disease, for example, is characterized by an accumulation of -amyloid protein (A) in neuritic plaques that are infiltrated by reactive microglia and astrocytes. Although A and its fragment 25-35 exert a direct toxic effect on neurons, they also activate microglia. Microglial activation is accompanied by morphological changes, cell proliferation, and release of various cytokines and growth factors. A number of scientific reports suggest that the increased proliferation of microglial cells is dependent on ionic membrane currents and in particular on chloride conductances. An unusual chloride ion channel known to be associated with macrophage activation is the chloride intracellular channel-1 (CLIC1). Here we show that A stimulation of neonatal rat microglia specifically leads to the increase in CLIC1 protein and to the functional expression of CLIC1 chloride conductance, both barely detectable on the plasma membrane of quiescent cells. CLIC1 protein expression in microglia increases after 24 hr of incubation with A, simultaneously with the production of reactive nitrogen intermediates and of tumor necrosis factor-␣ (TNF-␣). We demonstrate that reducing CLIC1 chloride conductance by a specific blocker [IAA-94 (R(ϩ)-[ (6,7-dichloro-2-cyclopentyl-2,3-dihydro-2-methyl-1-oxo-1H-inden-5yl)-oxy] acetic acid)] prevents neuronal apoptosis in neurons cocultured with A-treated microglia. Furthermore, we show that small interfering RNAs used to knock down CLIC1 expression prevent TNF-␣ release induced by A stimulation. These results provide a direct link between A-induced microglial activation and CLIC1 functional expression.
A specific neuronal vulnerability to amyloid protein toxicity may account for brain susceptibility to protein misfolding diseases. To investigate this issue, we compared the effects induced by oligomers from salmon calcitonin (sCTOs), a neurotoxic amyloid protein, on cells of different histogenesis: mature and immature primary hippocampal neurons, primary astrocytes, MG63 osteoblasts and NIH-3T3 fibroblasts. In mature neurons, sCTOs increased apoptosis and induced neuritic and synaptic damages similar to those caused by amyloid beta oligomers. Immature neurons and the other cell types showed no cytotoxicity. sCTOs caused cytosolic Ca(2+) rise in mature, but not in immature neurons and the other cell types. Comparison of plasma membrane lipid composition showed that mature neurons had the highest content in lipid rafts, suggesting a key role for them in neuronal vulnerability to sCTOs. Consistently, depletion in gangliosides protected against sCTO toxicity. We hypothesize that the high content in lipid rafts makes mature neurons especially vulnerable to amyloid proteins, as compared to other cell types; this may help explain why the brain is a target organ for amyloid-related diseases.
Calcitonin is a polypeptidic hormone involved in calcium metabolism in the bone. It belongs to the amyloid protein family, which is characterized by the common propensity to aggregate acquiring a beta-sheet conformation and include proteins associated with important neurodegenerative diseases. Here we show for the first time, to our knowledge, by transmission electron microscopy (TEM) that salmon-calcitonin (sCT) forms annular oligomers similar to those observed for beta-amyloid and alpha-sinuclein (Alzheimer's and Parkinson's diseases). We also investigated the interaction between sCT and model membranes, such as liposomes, with particular attention to the effect induced by lipid "rafts" made of cholesterol and G(M1). We observed, by TEM immunogold labeling of sCT, that protein binding is favored by the presence of rafts. In addition, we found by TEM that sCT oligomers inserted in the membrane have the characteristic pore-like morphology of the amyloid proteins. Circular dichroism experiments revealed an increase in beta-content in sCT secondary structure when the protein was reconstituted in rafts mimicking liposomes. Finally, we showed, by spectrofluorimetry experiments, that the presence of sCT allowed Ca(2+) entry in rafts mimicking liposomes loaded with the Ca(2+)-specific fluorophore Fluo-4. This demonstrates that sCT oligomers have ion-channel activity. Our results are in good agreement with recent electrophysiological studies reporting that sCT forms Ca(2+)-permeable ion channels in planar model membranes. It has been proposed that, beyond the well-known interaction of the monomer with the specific receptor, the formation of Ca(2+) channels due to sCT oligomers could represent an extra source of Ca(2+) entry in osteoblasts. Structural and functional data reported here support this hypothesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.