Wire electrical discharge machining(WEDM) banyak digunakan untuk proses pembuatan punch and dies. Dimana material yang digunakan memiliki tingkat kekerasan yang sangat tinggi. Parameter pemesinan yang kurang tepat dapat menyebabkan hasil pemotongan yang tidak optimal. Penelitian ini dilakukan untuk mengoptimalkan beberapa karakteristik hasil proses pemesinan secara serentak dengan cara mevariasikan variabel-variabel proses pemesinan WEDM. Karakteristik hasil proses yang diteliti antara lain adalah lebar pemotongan, kekasaran permukaan, dan tebal lapisan white layer. Proses pemesinan dilakukan pada material tool steel SKD 11. Arc on time, on time, open voltage dan servo voltage merupakan variabel-variabel proses yang akan divariasikan. Rancangan percobaan dilakukan menggunakan metode Taguchi dengan matriks ortogonal L18(21x33) dengan dua kali replikasi. Sedangkan langkah yang digunakan untuk mengoptimasi karakteristik hasil proses pemesinan yang diteliti secara serentak adalah menggunakan metode grey relational analysis (GRA). Lebar pemotongan, kekasaran permukaan dan tebal lapisan white layer memiliki performance characteristics “smaller-is-better.” Hasil dari penelitian menunjukkan nilai variabel-variabel proses pemesinan yang menghasilkan kualitas karakteristik yang paling optimum adalah sebagai berikut: arc on time (1A), on time (4?s), open voltage (70V), dan servo voltage (40V). Dengan persentase kontribusi variabel proses dari yang terbesar berturut-turut adalah on time (65,09%), open voltage (11,35%), arc on time (7,71%), dan servo voltage (5,61%). Wire electrical discharge machining (WEDM) process is commonly used to make punch and dies. WEDM services are typically used to cut hard metals. Inappropriate machining parameters can cause suboptimal cutting results. This research was conducted to optimize several characteristics of the machining process simultaneously by varying WEDM machining process variables. Performance characteristics of the WEDM process include the kerf, surface roughness and thickness of the white layer. The machining process is carried out on SKD 11 tool steel material. Arc on time, on time, open voltage and servo voltage are process variables that will be varied. The experimental matrix design was carried out using the Taguchi method L18 (21x33) orthogonal array with two replications. Then to optimize the performance characteristics of the machining process simultaneously is using the Gray Relational Analysis (GRA) method. Performance characteristics of kerf, surface roughness, and thickness of the white layer is "smaller-is-better". The results of the experiment indicate the value of the machining process variables that produce the most optimum quality performance characteristics are as follows: arc on time (1A), on time (4?s), open voltage (70V), and servo voltage (40V). And the percentage of contribution of the process variables from the largest to smallest are as follows: on time (65,09%), open voltage (11,35%), arc on time (7,71%), and servo voltage (5,61%).
The machining process using a combination of steep and shallow strategy is the most widely used strategy for the finishing process on complex models that have many areas of steep walls and shallow floors. Using a single machining strategy on the entire model can lead to long machining times and poor surface finish quality. The steep and shallow strategy can efficiently detect parts of the model that have steep contours and those that have shallow contours. In other words, this strategy can analyze the model surface angle at runtime to identify and divide the machining zone based on the slope angle or commonly called the threshold angle. In this context, the selection of the threshold angle is very important when carrying out the finishing process on free-form surfaces to produce a good surface quality. This study was conducted to determine the optimum threshold angle that can produce the minimum surface roughness between steep areas and shallow areas. Threshold angles that were varied were 20°, 30° and 40°. Machining was carried out using Ballnose type cutting tools with a diameter of 6 mm. Then the stepover and stepdown is 0.1 mm for the finishing process on the surface of the propeller product made of Aluminum by using a CNC Milling machine. From the experimental results, the most optimum threshold angle is at an angle of 40° with an average roughness value in the steep area of 1.9 mm and in the shallow area of 1.3mm and a total average roughness of 1.6mm.
AbstrakPermesinan kapal merupakan bagian dari sebuah kapal sebagai suatu sistem. Oleh karena itu, dalam permesinan kapal terdapat banyak komponen permesinan, antara lain: sistem roda gigi, sistem poros, dan lain sebagainya. Dalam pembuatan komponen mesin penggerak kapal tentu melibatkan banyak mesin perkakas, salah satunya adalah mesin gerinda.Proses gerinda adalah suatu proses manufaktur yang penting dan digunakan untuk membentuk benda kerja sesuai dengan persyaratan geometri, dimensi dan toleransi tertentu.Suatu penelitian dilakukan untuk mempelajari pengaruh tipe abrasif, kecepatan makan dan kedalaman potong terhadapsurface integrity dan bentuk geram pada proses gerinda permukaan baja perkakas SKD-61. Surface Integrityyang dianalisis adalah kekasaran permukaan dan microcrack. Rancangan eksperimen yang digunakan pada penelitian ini adalah faktorial 2 x 3 x 3 karena faktor tipe abrasif memiliki 2 level, sedangkan faktor lain masing-masing memiliki 3 level. Replikasi dilakukan sebanyak 2 kali. Cairan pendingin yang digunakan pada penelitian ini adalah soluble oil.Pengukuran kekasaran permukaan diukur dengan menggunakan surftest, selanjutnya bentuk geram dan microcrack diamati dengan menggunakan scanning electron microscope (SEM). Hasil penelitian menunjukkan bahwa dengan peningkatan kedalaman potong maka kekasaran permukaan akan semakin besar. Jenis abrasif dan kedalaman potong juga mempengaruhi besarnya kepadatan microcrack.Hasil proses gerinda permukaan dengan kedalaman pemakanan rendah menghasilkan bentuk geram lamellardan leafy. Hal ini mengindikasikan bahwa mekanisme pembentukan geram didominasi oleh proses shearing. Hasil proses gerinda permukaan dengan kedalaman pemakanan yang tinggi menghasilkan bentuk geram leafy, spherical, lamellar dan irregular. Hal ini mengindikasikan bahwa mekanisme pembentukan geram terdiri dari proses shearing, rubbing, plowing dan fracturing. Kata Kunci: surface integrity,bentuk geramAbstract Surface grinding is an important manufacturing process and used to form the workpiece in accordance with the requirements of geometry, dimensions and tolerances. This process is used when the requirements of accuracy and surface quality of the workpiece cannot be met by the others machining processes, such as turning and milling. Improper selection of abrasive type and surface grinding parameters (such as feeding speed and depth of cut) can give adverse impact on surface integrity, such as surface roughness and crack density. Performance of surface grinding can also be evaluated from chip formation. Anexperiment was conducted to study the effect ofthe abrasive type, feeding speed and depth of cut on surface integrity and chip formation of surface grinding process on SKD61 tool steel. Experimental design used in this study was a 2x3x3 factorial. This experiment use soluble oil as coolant. Surface roughness was measured by using surftest, and the determination of crack density and chip formation conducted by using a scanning electron microscope (SEM). Theresults of the experiment showed that s...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.