Abstract-Shared control is a key technology for various robotic applications in which a robotic system and a human operator are meant to collaborate efficiently. In order to achieve efficient task execution in shared control, it is essential to predict the desired behavior for a given situation or context to simplify the control task for the human operator. To do this prediction, we use Learning from Demonstration (LfD), which is a popular approach for transferring human skills to robots. We encode the demonstrated behavior as trajectory distributions and generalize the learned distributions to new situations. The goal of this paper is to present a shared control framework that uses learned expert distributions to gain more autonomy. Our approach controls the balance between the controller's autonomy and the human preference based on the distributions of the demonstrated trajectories. Moreover, the learned distributions are autonomously refined from collaborative task executions, resulting in a master-slave system with increasing autonomy that requires less user input with an increasing number of task executions. We experimentally validated that our shared control approach enables efficient task executions. Moreover, the conducted experiments demonstrated that the developed system improves its performances through interactive task executions with our shared control.
We propose novel haptic guidance methods for a dual-arm telerobotic manipulation system, which are able to deal with several different constraints, such as collisions, joint limits, and singularities. We combine the haptic guidance with shared-control algorithms for autonomous orientation control and collision avoidance meant to further simplify the execution of grasping tasks. The stability of the overall system in various control modalities is presented and analyzed via passivity arguments. In addition, a human subject study is carried out to assess the effectiveness and applicability of the proposed control approaches both in simulated and real scenarios. Results show that the proposed haptic-enabled shared-control methods significantly improve the performance of grasping tasks with respect to the use of classic teleoperation with neither haptic guidance nor shared control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.