We study quenched distributions on random walks in a random potential on integer lattices of arbitrary dimension and with an arbitrary finite set of admissible steps. The potential can be unbounded and can depend on a few steps of the walk. Directed, undirected and stretched polymers, as well as random walk in random environment, are covered. The restriction needed is on the moment of the potential, in relation to the degree of mixing of the ergodic environment. We derive two variational formulas for the limiting quenched free energy and prove a process-level quenched large deviation principle for the empirical measure. As a corollary we obtain LDPs for types of random walk in random environment not covered by earlier results.
We consider a discrete time random walk in a space-time i.i.d. random environment. We use a martingale approach to show that the walk is diffusive in almost every fixed environment. We improve on existing results by proving an invariance principle and considering environments with an L 2 averaged drift. We also state an a.s. invariance principle for random walks in general random environments whose hypothesis requires a subdiffusive bound on the variance of the quenched mean, under an ergodic invariant measure for the environment chain.
We study the directed last-passage percolation model on the planar square lattice with nearest-neighbor steps and general i.i.d. weights on the vertices, outside of the class of exactly solvable models. Stationary cocycles are constructed for this percolation model from queueing fixed points. These cocycles serve as boundary conditions for stationary last-passage percolation, solve variational formulas that characterize limit shapes, and yield existence of Busemann functions in directions where the shape has some regularity. In a sequel to this paper the cocycles are used to prove results about semi-infinite geodesics and the competition interface.
We study the directed last-passage percolation model on the planar square lattice with nearest-neighbor steps and general i.i.d. weights on the vertices, outside of the class of exactly solvable models. Stationary cocycles are constructed for this percolation model from queueing fixed points. These cocycles serve as boundary conditions for stationary last-passage percolation, solve variational formulas that characterize limit shapes, and yield existence of Busemann functions in directions where the shape has some regularity. In a sequel to this paper the cocycles are used to prove results about semi-infinite geodesics and the competition interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.