Abstract-Keyphrases are useful information extracted from documents. They reflect the main ideas of the text. Therefore knowing the list of keyphrases can save substantial amount of time which can be lost during searching for a document about a particular topic. Unfortunately, there are many documents which do not include a list of keyphrases. Thus automatic extraction of keyphrases becomes an important task. In this paper, a method for Turkish keyphrase extraction is explained.
We describe a new image representation using spatial relationship histograms that extend our earlier work on modeling image content using attributed relational graphs. These histograms are constructed by classifying the regions in an image, computing the topological and distance-based spatial relationships between these regions, and counting the number of times different groups of regions are observed in the image. We also describe a selection algorithm that produces very compact representations by identifying the distinguishing region groups that are frequently found in a particular class of scenes but rarely exist in others. Experiments using Ikonos scenes illustrate the effectiveness of the proposed representation in retrieval of images containing complex types of scenes such as dense and sparse urban areas.
Abstract-In information retrieval (IR) systems, there are a query and a collection of documents compared with this query and ranked according to a particular similarity measure. Since texts with the same content can be written by different authors, the writing styles of the documents change as well accordingly. This observation brings the idea of investigating text by means of style. In this paper, we analyze text documents in terms of stylistic features of the written text and measure effectiveness of these features in an IR system. Our main focus is on Turkish text documents. Although there are many studies about broadening IR systems with style based enhancement, there is no similar application for Turkish which performs retrieval depending purely on style.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.