BackgroundThe finding of human umbilical cord blood as one of the most likely sources of hematopoietic stem cells offers a less invasive alternative for the need of hematopoietic stem cell transplantation. Due to the once-in-a-life time chance of collecting it, an optimum cryopreservation method that can preserve the life and function of the cells contained is critically needed.MethodsUntil now, slow-cooling has been the routine method of cryopreservation; however, rapid-cooling offers a simple, efficient, and harmless method for preserving the life and function of the desired cells. Therefore, this study was conducted to compare the effectiveness of slow- and rapid-cooling to preserve umbilical cord blood of mononucleated cells suspected of containing hematopoietic stem cells. The parameters used in this study were differences in cell viability, malondialdehyde content, and apoptosis level. The identification of hematopoietic stem cells themselves was carried out by enumerating CD34+ in a flow cytometer.ResultsOur results showed that mononucleated cell viability after rapid-cooling (91.9%) was significantly higher than that after slow-cooling (75.5%), with a p value = 0.003. Interestingly, the malondialdehyde level in the mononucleated cell population after rapid-cooling (56.45 μM) was also significantly higher than that after slow-cooling (33.25 μM), with a p value < 0.001. The apoptosis level in rapid-cooling population (5.18%) was not significantly different from that of the mononucleated cell population that underwent slow-cooling (3.81%), with a p value = 0.138. However, CD34+ enumeration was much higher in the population that underwent slow-cooling (23.32 cell/μl) than in the one that underwent rapid-cooling (2.47 cell/μl), with a p value = 0.001.ConclusionsRapid-cooling is a potential cryopreservation method to be used to preserve the umbilical cord blood of mononucleated cells, although further optimization of the number of CD34+ cells after rapid-cooling is critically needed.
A wide variety of natural compounds have been recognized for targeting multiple malignancy signaling pathways and inducing apoptosis in various cancer cell lines from different origins. The chemical compositions of those substances present in plants contribute to their significant biological and medicinal value. In this review, we summarized our current findings and knowledge
Mini-review Articleof bioactive compounds isolated from the Indonesian medicinal herb, Phaleria macrocarpa (Scheff.) Boerl, also known as Mahkota Dewa (MaDe) that originated from Papua province. A growing body of evidence from several countries suggests that the plant possesses potential for cancer therapy and chemoprevention. Exploring its mechanism in targeting multiple malignancy signaling pathways will provide valuable information for possible clinical applications in cancer management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.