Indonesia merupakan negara yang sangat berkembang jumlah penduduknya. Seiring dengan perkembangan tahun ke tahun terus diimbangi dengan kesadaran akan arti penting peningkatan gizi dalam kehidupan. Oleh karena itu diperlukan sistem klasifikasi ayam petelur menggunakan Artificial Neural Network dan Decision Tree. Penelitian ini bertujuan untuk mengklasifikasikan jenis-jenis dari ayam petelur yang ada di Indonesia. Karena banyaknya jenis ayam, nantinya akan memudahkan masyarakat ataupun pengusaha ayam dalam memilih ayam petelur yang berkualitas baik. Disisi lain juga dapat meningkatkan ekonomi masyarakat dengan cara menjual sebuah ayam petelur dengan kualitas yang baik. Dalam pengujian yang dihasilkan Artificial Neural Network lebih baik dalam proses pengujiannya. Hasil membuktikan pada split ratio 50:50 tekstur dan bentuk dengan nilai precision mendapatkan nilai mencapai 0.680, recall mendapatkan nilai 0.521, f-measure mendapatkan nilai 0.600 dan accuracy juga memiliki nilai tertinggi mencapai 92.50% pada split ratio 50:50 antara data training dan data testing. Hasil membuktikan dengan klasifikasi menggunakan Artificial Neural Network menghasilkan precision, recall, f-measure dan accuracy tertinggi dibandingkan decision tree.
Various technologies were created to prevent the threat of the Covid-19 virus, which has spread in many countries including Indonesia. One of them is the use of masks in public places. With this in mind, this study aims to detect facial objects. Based on the Kaggle website, the object used for research is a human face in 2D form. This research consists of two stages, namely creating and testing a model. The model is a system that detects and classifies faces with masks, inappropriate masks and without masks. Then the model is tested for its accuracy. The result of thirty trials, the model has an accuracy of 99% which is tested using a webcam in real time. This model has a sound indicator which is a notification to faces using the Convolutional Neural Network (CNN) algorithm method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.