This paper proposes an online condition monitoring system for aluminum electrolytic capacitors used as dc-link capacitors in industrial power converters. Electrolytic capacitors are one of the most fragile components of a power converter system because of their wear-out failures and short lifespan. Therefore, the use of condition monitoring systems for aluminum electrolytic capacitors allow preventive maintenance to be performed, thereby avoiding unexpected shutdown and downtime. The dominant wear-out mechanisms in aluminum electrolytic capacitors are characterized by the increase in equivalent series resistance. Hence, the condition monitoring system proposed in this paper is based on the online estimation of the capacitor's equivalent series resistance using the switching frequency components of the dc-link capacitor voltage and current. The equivalent series resistance estimation method is tested using the PSpice circuit simulator and is validated experimentally using a custom-made inverter. Finally, the equivalent series resistance estimation method is adapted for the condition monitoring of capacitors in industrial power converters and the proposed condition monitoring system is implemented in a commercial ac drive system to prove the applicability of the proposed method to industrial power converters.
The Vienna rectifier is an attractive converter solution due to the three-level voltage generation and its simple structure. When the Vienna rectifier operates with nonunity power factor, the reference voltage and the input current have different signs during some intervals around the current zero crossings. This creates low-frequency distortion in the current waveforms. One of the preferable methods to reduce this distortion is the zero sequence injection which, however, risks the converter entering into overmodulation. This paper analyses the above distortion and introduces the operation of the Vienna rectifier in two modes, which includes injecting a proper zero sequence and reactive power compensation. This allows the converter to operate in a wide range of power factors without constraining the modulation index. The required reactive current is obtained analytically from the instantaneous values of the converter at any operating point.Index Terms-Active front end rectifier, current distortion at zero crossing, nonunity power factor, reactive power compensation, Vienna rectifier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.